
Natural Language Processing
Word Vectors

Felipe Bravo-Marquez

November 20, 2018

Word Vectors

• A major component in neural networks for language is the use of an embedding
layer.

• A mapping of discrete symbols to continuous vectors.
• When embedding words, they transform from being isolated distinct symbols into

mathematical objects that can be operated on.
• Distance between vectors can be equated to distance between words,
• This makes easier to generalize the behavior from one word to another.

Distributional Vectors

• Distributional Hypothesis [Harris, 1954]: words occurring in the same
contexts tend to have similar meanings.

• Or equivalently: “a word is characterized by the company it keeps”.
• Distributional representations: words are represented by high-dimensional

vectors based on the context’s where they occur.

Word-context Matrices

• Distributional vectors are built from word-context matrices M.
• Each cell (i, j) is a co-occurrence based association value between a target

word wi and a context cj calculated from a corpus of documents.
• Contexts are commonly defined as windows of words surrounding wi .
• The window length k is a parameter (between 1 and 8 words on both the left

and the right sides of wi).
• If the Vocabulary of the target words and context words is the same, M has

dimensionality |V| × |V|.
• Whereas shorter windows are likely to capture syntactic information (e.g,

POS), longer windows are more likely to capture topical similarity
[Goldberg, 2016, Jurafsky and Martin, 2008].

Distributional Vectors with context windows of size 1

0Example taken from:
http://cs224d.stanford.edu/lectures/CS224d-Lecture2.pdf

http://cs224d.stanford.edu/lectures/CS224d-Lecture2.pdf

Word-context Matrices

The associations between words and contexts can be calculated using different
approaches:

1. Co-occurrence counts

2. Positive point-wise mutual information (PPMI)

3. The significance values of a paired t-test.

The most common of those according to [Jurafsky and Martin, 2008] is PPMI.
Distributional methods are also referred to as count-based methods.

PPMI

• PPMI a filtered version of the traditional PMI measure in which negative values
are set to zero:

PPMI(w , c) = max(0,PMI(w , c)) (1)

PPMI(w , c) = max
(

0, log2

(
count(w , c)× |D|

count(w)× count(c)

))
. (2)

• PMI calculates the log of the probability of word-context pairs occurring together
over the probability of them being independent.

• Negative PMI values suggest that the pair co-occurs less often than chance.
• These estimates are unreliable unless the counts are calculated from very large

corpora [Jurafsky and Martin, 2008].
• PPMI corrects this problem by replacing negative values by zero.

Distributed Vectors or Word embeddings

• Count-based distributional vectors increase in size with vocabulary i.e., can have
a very high dimensionality.

• Explicitly storing the co-occurrence matrix can be memory-intensive.
• Some classification models don’t scale well to high-dimensional data.
• The neural network community prefers using distributed representations1 or

word embeddings.
• Word embeddings are low-dimensional continuous dense word vectors trained

from document corpora using neural networks.
• They have become a crucial component of Neural Network architectures for NLP.

1Idea: The meaning of the word is “distributed” over a combination of
dimensions.

Distributed Vectors or Word embeddings (2)

• They usually rely on an auxiliary predictive task (e.g., predict the following word).
• The dimensions are not directly interpretable i.e., represent latent features of the

word, “hopefully capturing useful syntactic and semantic
properties”[Turian et al., 2010].

• Most popular models are skip-gram [Mikolov et al., 2013], continuos
bag-of-words [Mikolov et al., 2013], and Glove [Pennington et al., 2014].

• Word embeddings have shown to be more powerful than distributional
approaches in many NLP tasks [Baroni et al., 2014].

• In [Amir et al., 2015], they were used as features in a regression model for
determining the association between Twitter words and positive sentiment.

Word2Vec

• Word2Vec is a software package that implements two neural network
architectures for training word embeddings: Continuos Bag of Words (CBOW)
and Skip-gram.

• It implements two optimization models: Negative Sampling and Hierarchical
Softmax.

• These models are neural networks with one hidden layer that are trained to
predict the contexts of words.

Skip-gram Model
• A neural network with one hidden layer is trained for predicting the words

surrounding a center word, within a window of size k that is shifted along the
input corpus.

• The center and surrounding k words correspond to the input and output layers of
the network.

• Words are initially represented by 1-hot vectors: vectors of the size of the
vocabulary (|V |) with zero values in all entries except for the corresponding word
index that receives a value of 1.

• The output layer is formed by the concatenation of the k 1-hot vectors of the
surrounding words.

• The hidden layer has a dimensionality d , which determines the size of the
embeddings (normally d � |V |).

Skip-gram Model

1Picture taken from: http://mccormickml.com/2016/04/19/
word2vec-tutorial-the-skip-gram-model/

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Parametrization of the Skip-gram model
• The conditional probability of the context word c given the center word w is

modelled with a softmax (C is the set of all context words):

p(c|w) =
e~c·~w∑

c′∈C e~c′·~w

• Model’s parameters θ: ~c and ~w (vector representations of contexts and words).
• The optimization goal is to maximize the conditional likelihood of the contexts c:

arg max
~c,~w

∑
(w,c)∈D

log p(c|w) =
∑

(w,c)∈D

(log e~c·~w − log
∑

c′∈C

e~c
′·~w) (3)

• Assumption: maximising this function will result in good embeddings ~w i.e.,
similar words will have similar vectors.

• The term p(c|w) is computationally expensive because of the summation∑
c′∈C e~c

′·~w over all the contexts c′

• Fix: replace the softmax with a hierarchical softmax (the vocabulary is
represented with a Huffman binary tree).

• Huffman trees assign short binary codes to frequent words, reducing the number
of output units to be evaluated.

Skip-gram with Negative Sampling
• Negative-sampling (NS) is presented as a more efficient model for calculating

skip-gram embeddings.
• However, it optimises a different objective function [Goldberg and Levy, 2014].
• Let D be the set of correct word-context pairs.
• NS maximizes the probability that a word-context pair a word-context pair (w , c)

came from the input corpus D using a sigmoid function:

P(D = 1|w , ci) =
1

1 + e−~w·~ci

• Assumption: the contexts words ci are indepedent from each other:

P(D = 1|w , c1:k) =
k∏

i=1

P(D = 1|w , ci) =
k∏

i=1

1
1 + e−~w·~ci

• This leads to the following target function (log-likelihood):

arg max
~c,~w

log P(D = 1|w , c1:k) =
k∑

i=1

log
1

1 + e−~w·~ci
(4)

Skip-gram with Negative Sampling (2)

• This objective has a trivial solution if we set ~w ,~c such that p(D = 1|w , c) = 1 for
every pair (w , c) from D.

• This is achieved by setting ~w = ~c and ~w · ~c = K for all ~w ,~c, where K is a large
number.

• We need a mechanism that prevents all the vectors from having the same value,
by disallowing some (w , c) combinations.

• One way to do so, is to present the model with some (w , c) pairs for which
p(D = 1|w , c) must be low, i.e. pairs which are not in the data.

• This is achieved sampling negative samples from D̃.

Skip-gram with Negative Sampling (3)

• Sample m words for each word-context pair (w , c) ∈ D.
• Add each sampled word wi together with the original context c as a negative

example to D̃.
• Final objective function:

arg max
~c,~w

∑
(w,c)∈D

log P(D = 1|w , c1:k) +
∑

(w,c)∈D̃

log P(D = 0|w , c1:k) (5)

• The negative words are sampled from smoothed version of the corpus
frequencies:

#(w)0.75∑
w′ #(w ′)0.75

• This gives more relative weight to less frequent words.

Continuos Bag of Words: CBOW

• Similar to the skip-gram model but now the center word is predicted from the
surrounding context.

GloVe

• GloVe (from global vectors) is another popular method for training word
embeddings [Pennington et al., 2014].

• It constructs an explicit word-context matrix, and trains the word and context
vectors ~w and ~c attempting to satisfy:

w · c + b[w] + b[c] = log#(w , c) ∀(w , c) ∈ D (6)

• where b[w] and b[c] are word-specific and context-specific trained biases.

GloVe (2)

• In terms of matrix factorization, if we fix b[w] = log#(w) and b[c] = log#(c)
we’ll get an objective that is very similar to factorizing the word-context PMI
matrix, shifted by log(|D|).

• In GloVe the bias parameters are learned and not fixed, giving it another degree
of freedom.

• The optimization objective is weighted least-squares loss, assigning more weight
to the correct reconstruction of frequent items.

• When using the same word and context vocabularies, the model suggests
representing each word as the sum of its corresponding word and context
embedding vectors.

Word Analogies

• Word embeddings can capture certain semantic relationships, e.g. male-female,
verb tense and country-capital relationships between words.

• For example, the following relationship is found for word embeddings trained
using Word2Vec: ~wking − ~wman + ~wwoman ≈ ~wqueen.

2Source: https://www.tensorflow.org/tutorials/word2vec

https://www.tensorflow.org/tutorials/word2vec

Correspondence between Distributed and
Distributional Models

• Both the distributional “count-based” methods and the distributed “neural” ones
are based on the distributional hypothesis.

• The both attempt to capture the similarity between words based on the similarity
between the contexts in which they occur.

• Levy and Goldebrg showed in [Levy and Goldberg, 2014] that Skip-gram
negative sampling (SGNS) is implicitly factorizing a word-context matrix, whose
cells are the pointwise mutual information (PMI) of the respective word and
context pairs, shifted by a global constant.

• This ties the neural methods and the traditional “count-based” suggesting that in
a deep sense the two algorithmic families are equivalent.

FastText

• FastText embeedings extend the skipgram model to take into account the internal
structure of words while learning word representations [Bojanowski et al., 2016].

• A vector representation is associated to each character n-gram.
• Words are represented as the sum of these representations.
• Taking the word where and n = 3, it will be represented by the character

n-grams: <wh, whe, her, ere, re>, and the special sequence <where>.
• Note that the sequence <her>, corresponding to the word “her” is different from

the tri-gram “her” form the word “here”.
• FastText is useful for morphologically rich languages. For example, the words

“amazing” and “amazingly” share information in FastText through their shared
n-grams, whereas in Word2Vec these two words are completely unrelated.

FastText (2)

• Let Gw be the set of n-grams appearing in w .
• FastText associates a vector ~g to each n-gram in Gw .
• In FastText the probability that a word-context pair (w , c) came from the input

corpus D is calculated as follows:

P(D|w , c) =
1

1 + e−s(w,c)

where,

s(w , c) =
∑

g∈Gw

~g · ~c.

• The negative sampling algorithm can be calculated in the same form as in the
skip-gram model with this formulation.

Sentiment-Specific Phrase Embeddings

• Problem of word embeddings: antonyms can be used in similar contexts e.g., my
car is nice vs my car is ugly.

• In [Tang et al., 2014] sentiment-specific word embeddings are proposed by
combining the skip-gram model with emoticon-annotated tweets :) :(.

• These embeddings are used for training a word-level polarity classifier.
• The model integrates sentiment information into the continuous representation of

phrases by developing a tailored neural architecture.
• Input: {wi , sj , polj}, where wi is a phrase (or word), sj the sentence, and polj the

sentence’s polarity.

Sentiment-Specific Phrase Embeddings (2)

• The training objective uses the embedding of wi to predict its context words (in
the same way as the skip-gram model), and uses the sentence representation
sej to predict polj .

• Sentences (sej) are represented by averaging the word vectors of their words.
• The objective of the sentiment part is to maximize the average of log sentiment

probability:

fsentiment =
1
S

S∑
j=1

log p(polj |sej)

• The final training objective is to maximize the linear combination of the skip-gram
and sentiment objectives:

f = αfskipgram + (1− α)fsentiment

Sentiment-Specific Phrase Embeddings

Gensim

Gensim is an open source Python library for natural language processing that
implements many algorithms for training word embeddings.

• https://radimrehurek.com/gensim/

• https://machinelearningmastery.com/
develop-word-embeddings-python-gensim/

https://radimrehurek.com/gensim/
https://machinelearningmastery.com/develop-word-embeddings-python-gensim/
https://machinelearningmastery.com/develop-word-embeddings-python-gensim/

Questions?

Thanks for your Attention!

References I
Amir, S., Ling, W., Astudillo, R., Martins, B., Silva, M. J., and Trancoso, I. (2015).
Inesc-id: A regression model for large scale twitter sentiment lexicon induction.
In Proceedings of the 9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 613–618, Denver, Colorado. Association for
Computational Linguistics.

Baroni, M., Dinu, G., and Kruszewski, G. (2014).
Don’t count, predict! a systematic comparison of context-counting vs.
context-predicting semantic vectors.
In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics, pages 238–247. Association for Computational Linguistics.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2016).
Enriching word vectors with subword information.
arXiv preprint arXiv:1607.04606.

Goldberg, Y. (2016).
A primer on neural network models for natural language processing.
J. Artif. Intell. Res.(JAIR), 57:345–420.

Goldberg, Y. and Levy, O. (2014).
word2vec explained: deriving mikolov et al.’s negative-sampling word-embedding
method.
arXiv preprint arXiv:1402.3722.

References II
Harris, Z. (1954).
Distributional structure.
Word, 10(23):146–162.

Jurafsky, D. and Martin, J. H. (2008).
Speech and Language Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition.

Levy, O. and Goldberg, Y. (2014).
Neural word embedding as implicit matrix factorization.
In Advances in neural information processing systems, pages 2177–2185.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013).
Distributed representations of words and phrases and their compositionality.
In Burges, C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K.,
editors, Advances in Neural Information Processing Systems 26, pages
3111–3119. Curran Associates, Inc.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A
meeting of SIGDAT, a Special Interest Group of the ACL, pages 1532–1543.

References III

Tang, D., Wei, F., Qin, B., Zhou, M., and Liu, T. (2014).
Building large-scale twitter-specific sentiment lexicon : A representation learning
approach.
In COLING 2014, 25th International Conference on Computational Linguistics,
Proceedings of the Conference: Technical Papers, August 23-29, 2014, Dublin,
Ireland, pages 172–182.

Turian, J., Ratinov, L., and Bengio, Y. (2010).
Word representations: a simple and general method for semi-supervised
learning.
In Proceedings of the 48th annual meeting of the association for computational
linguistics, pages 384–394. Association for Computational Linguistics.

