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Word Vectors

• A major component in neural networks for language is the use of an embedding
layer.

• A mapping of discrete symbols to continuous vectors.
• When embedding words, they transform from being isolated distinct symbols into

mathematical objects that can be operated on.
• Distance between vectors can be equated to distance between words,
• This makes easier to generalize the behavior from one word to another.



Distributional Vectors

• Distributional Hypothesis [Harris, 1954]: words occurring in the same
contexts tend to have similar meanings.

• Or equivalently: “a word is characterized by the company it keeps”.
• Distributional representations: words are represented by high-dimensional

vectors based on the context’s where they occur.



Word-context Matrices

• Distributional vectors are built from word-context matrices M.
• Each cell (i, j) is a co-occurrence based association value between a target

word wi and a context cj calculated from a corpus of documents.
• Contexts are commonly defined as windows of words surrounding wi .
• The window length k is a parameter ( between 1 and 8 words on both the left

and the right sides of wi ).
• If the Vocabulary of the target words and context words is the same, M has

dimensionality |V| × |V|.
• Whereas shorter windows are likely to capture syntactic information (e.g,

POS), longer windows are more likely to capture topical similarity
[Goldberg, 2016, Jurafsky and Martin, 2008].



Distributional Vectors with context windows of size 1

0Example taken from:
http://cs224d.stanford.edu/lectures/CS224d-Lecture2.pdf

http://cs224d.stanford.edu/lectures/CS224d-Lecture2.pdf


Word-context Matrices

The associations between words and contexts can be calculated using different
approaches:

1. Co-occurrence counts

2. Positive point-wise mutual information (PPMI)

3. The significance values of a paired t-test.

The most common of those according to [Jurafsky and Martin, 2008] is PPMI.
Distributional methods are also referred to as count-based methods.



PPMI

• PPMI a filtered version of the traditional PMI measure in which negative values
are set to zero:

PPMI(w , c) = max(0,PMI(w , c)) (1)

PPMI(w , c) = max
(

0, log2

(
count(w , c)× |D|

count(w)× count(c)

))
. (2)

• PMI calculates the log of the probability of word-context pairs occurring together
over the probability of them being independent.

• Negative PMI values suggest that the pair co-occurs less often than chance.
• These estimates are unreliable unless the counts are calculated from very large

corpora [Jurafsky and Martin, 2008].
• PPMI corrects this problem by replacing negative values by zero.



Distributed Vectors or Word embeddings

• Count-based distributional vectors increase in size with vocabulary i.e., can have
a very high dimensionality.

• Explicitly storing the co-occurrence matrix can be memory-intensive.
• Some classification models don’t scale well to high-dimensional data.
• The neural network community prefers using distributed representations1 or

word embeddings.
• Word embeddings are low-dimensional continuous dense word vectors trained

from document corpora using neural networks.
• They have become a crucial component of Neural Network architectures for NLP.

1Idea: The meaning of the word is “distributed” over a combination of
dimensions.



Distributed Vectors or Word embeddings (2)

• They usually rely on an auxiliary predictive task (e.g., predict the following word).
• The dimensions are not directly interpretable i.e., represent latent features of the

word, “hopefully capturing useful syntactic and semantic
properties”[Turian et al., 2010].

• Most popular models are skip-gram [Mikolov et al., 2013], continuos
bag-of-words [Mikolov et al., 2013], and Glove [Pennington et al., 2014].

• Word embeddings have shown to be more powerful than distributional
approaches in many NLP tasks [Baroni et al., 2014].

• In [Amir et al., 2015], they were used as features in a regression model for
determining the association between Twitter words and positive sentiment.



Word2Vec

• Word2Vec is a software package that implements two neural network
architectures for training word embeddings: Continuos Bag of Words (CBOW)
and Skip-gram.

• It implements two optimization models: Negative Sampling and Hierarchical
Softmax.

• These models are neural networks with one hidden layer that are trained to
predict the contexts of words.



Skip-gram Model
• A neural network with one hidden layer is trained for predicting the words

surrounding a center word, within a window of size k that is shifted along the
input corpus.

• The center and surrounding k words correspond to the input and output layers of
the network.

• Words are initially represented by 1-hot vectors: vectors of the size of the
vocabulary (|V |) with zero values in all entries except for the corresponding word
index that receives a value of 1.

• The output layer is formed by the concatenation of the k 1-hot vectors of the
surrounding words.

• The hidden layer has a dimensionality d , which determines the size of the
embeddings (normally d � |V |).



Skip-gram Model

1Picture taken from: http://mccormickml.com/2016/04/19/
word2vec-tutorial-the-skip-gram-model/

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/


Parametrization of the Skip-gram model
• The conditional probability of the context word c given the center word w is

modelled with a softmax (C is the set of all context words):

p(c|w) =
e~c·~w∑

c′∈C e~c′·~w

• Model’s parameters θ: ~c and ~w (vector representations of contexts and words).
• The optimization goal is to maximize the conditional likelihood of the contexts c:

arg max
~c,~w

∑
(w,c)∈D

log p(c|w) =
∑

(w,c)∈D

(log e~c·~w − log
∑

c′∈C

e~c
′·~w ) (3)

• Assumption: maximising this function will result in good embeddings ~w i.e.,
similar words will have similar vectors.

• The term p(c|w) is computationally expensive because of the summation∑
c′∈C e~c

′·~w over all the contexts c′

• Fix: replace the softmax with a hierarchical softmax (the vocabulary is
represented with a Huffman binary tree).

• Huffman trees assign short binary codes to frequent words, reducing the number
of output units to be evaluated.



Skip-gram with Negative Sampling
• Negative-sampling (NS) is presented as a more efficient model for calculating

skip-gram embeddings.
• However, it optimises a different objective function [Goldberg and Levy, 2014].
• Let D be the set of correct word-context pairs.
• NS maximizes the probability that a word-context pair a word-context pair (w , c)

came from the input corpus D using a sigmoid function:

P(D = 1|w , ci ) =
1

1 + e−~w·~ci

• Assumption: the contexts words ci are indepedent from each other:

P(D = 1|w , c1:k ) =
k∏

i=1

P(D = 1|w , ci ) =
k∏

i=1

1
1 + e−~w·~ci

• This leads to the following target function (log-likelihood):

arg max
~c,~w

log P(D = 1|w , c1:k ) =
k∑

i=1

log
1

1 + e−~w·~ci
(4)



Skip-gram with Negative Sampling (2)

• This objective has a trivial solution if we set ~w ,~c such that p(D = 1|w , c) = 1 for
every pair (w , c) from D.

• This is achieved by setting ~w = ~c and ~w · ~c = K for all ~w ,~c, where K is a large
number.

• We need a mechanism that prevents all the vectors from having the same value,
by disallowing some (w , c) combinations.

• One way to do so, is to present the model with some (w , c) pairs for which
p(D = 1|w , c) must be low, i.e. pairs which are not in the data.

• This is achieved sampling negative samples from D̃.



Skip-gram with Negative Sampling (3)

• Sample m words for each word-context pair (w , c) ∈ D.
• Add each sampled word wi together with the original context c as a negative

example to D̃.
• Final objective function:

arg max
~c,~w

∑
(w,c)∈D

log P(D = 1|w , c1:k ) +
∑

(w,c)∈D̃

log P(D = 0|w , c1:k ) (5)

• The negative words are sampled from smoothed version of the corpus
frequencies:

#(w)0.75∑
w′ #(w ′)0.75

• This gives more relative weight to less frequent words.



Continuos Bag of Words: CBOW

• Similar to the skip-gram model but now the center word is predicted from the
surrounding context.



GloVe

• GloVe (from global vectors) is another popular method for training word
embeddings [Pennington et al., 2014].

• It constructs an explicit word-context matrix, and trains the word and context
vectors ~w and ~c attempting to satisfy:

w · c + b[w ] + b[c] = log#(w , c) ∀(w , c) ∈ D (6)

• where b[w ] and b[c] are word-specific and context-specific trained biases.



GloVe (2)

• In terms of matrix factorization, if we fix b[w ] = log#(w) and b[c] = log#(c)
we’ll get an objective that is very similar to factorizing the word-context PMI
matrix, shifted by log(|D|).

• In GloVe the bias parameters are learned and not fixed, giving it another degree
of freedom.

• The optimization objective is weighted least-squares loss, assigning more weight
to the correct reconstruction of frequent items.

• When using the same word and context vocabularies, the model suggests
representing each word as the sum of its corresponding word and context
embedding vectors.



Word Analogies

• Word embeddings can capture certain semantic relationships, e.g. male-female,
verb tense and country-capital relationships between words.

• For example, the following relationship is found for word embeddings trained
using Word2Vec: ~wking − ~wman + ~wwoman ≈ ~wqueen.

2Source: https://www.tensorflow.org/tutorials/word2vec

https://www.tensorflow.org/tutorials/word2vec


Correspondence between Distributed and
Distributional Models

• Both the distributional “count-based” methods and the distributed “neural” ones
are based on the distributional hypothesis.

• The both attempt to capture the similarity between words based on the similarity
between the contexts in which they occur.

• Levy and Goldebrg showed in [Levy and Goldberg, 2014] that Skip-gram
negative sampling (SGNS) is implicitly factorizing a word-context matrix, whose
cells are the pointwise mutual information (PMI) of the respective word and
context pairs, shifted by a global constant.

• This ties the neural methods and the traditional “count-based” suggesting that in
a deep sense the two algorithmic families are equivalent.



FastText

• FastText embeedings extend the skipgram model to take into account the internal
structure of words while learning word representations [Bojanowski et al., 2016].

• A vector representation is associated to each character n-gram.
• Words are represented as the sum of these representations.
• Taking the word where and n = 3, it will be represented by the character

n-grams: <wh, whe, her, ere, re>, and the special sequence <where>.
• Note that the sequence <her>, corresponding to the word “her” is different from

the tri-gram “her” form the word “here”.
• FastText is useful for morphologically rich languages. For example, the words

“amazing” and “amazingly” share information in FastText through their shared
n-grams, whereas in Word2Vec these two words are completely unrelated.



FastText (2)

• Let Gw be the set of n-grams appearing in w .
• FastText associates a vector ~g to each n-gram in Gw .
• In FastText the probability that a word-context pair (w , c) came from the input

corpus D is calculated as follows:

P(D|w , c) =
1

1 + e−s(w,c)

where,

s(w , c) =
∑

g∈Gw

~g · ~c.

• The negative sampling algorithm can be calculated in the same form as in the
skip-gram model with this formulation.



Sentiment-Specific Phrase Embeddings

• Problem of word embeddings: antonyms can be used in similar contexts e.g., my
car is nice vs my car is ugly.

• In [Tang et al., 2014] sentiment-specific word embeddings are proposed by
combining the skip-gram model with emoticon-annotated tweets :) :( .

• These embeddings are used for training a word-level polarity classifier.
• The model integrates sentiment information into the continuous representation of

phrases by developing a tailored neural architecture.
• Input: {wi , sj , polj}, where wi is a phrase (or word), sj the sentence, and polj the

sentence’s polarity.



Sentiment-Specific Phrase Embeddings (2)

• The training objective uses the embedding of wi to predict its context words (in
the same way as the skip-gram model), and uses the sentence representation
sej to predict polj .

• Sentences (sej ) are represented by averaging the word vectors of their words.
• The objective of the sentiment part is to maximize the average of log sentiment

probability:

fsentiment =
1
S

S∑
j=1

log p(polj |sej )

• The final training objective is to maximize the linear combination of the skip-gram
and sentiment objectives:

f = αfskipgram + (1− α)fsentiment



Sentiment-Specific Phrase Embeddings



Gensim

Gensim is an open source Python library for natural language processing that
implements many algorithms for training word embeddings.

• https://radimrehurek.com/gensim/

• https://machinelearningmastery.com/
develop-word-embeddings-python-gensim/

https://radimrehurek.com/gensim/
https://machinelearningmastery.com/develop-word-embeddings-python-gensim/
https://machinelearningmastery.com/develop-word-embeddings-python-gensim/


Questions?

Thanks for your Attention!
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