## Natural Language Processing Sequence to Sequence Models

Felipe Bravo-Marquez

November 20, 2018

#### Language Models and Language Generation

- Language modeling is the task of assigning a probability to sentences in a language.
- Example: what is the probability of seeing the sentence "the lazy dog barked loudly"?
- The task can be formulated as the task of predicting the probability of seing a word conditioned on previous words:

$$P(w_i|w_1, w_2, \cdots, w_{i-1}) = \frac{P(w_1, w_2, \cdots, w_{i-1}, w_i)}{P(w_1, w_2, \cdots, w_{i-1})}$$

#### Language Models and Language Generation

- RNNs can be used to train language models by tying the output at time *i* with its input at time *i* + 1.
- This network can be used to generate sequences of words or random sentences.
- Generation process: predict a probability distribution over the first word conditioned on the start symbol, and draw a random word according to the predicted distribution.
- Then predict a probability distribution over the second word conditioned on the first, and so on, until predicting the end-of-sequence < /s> symbol.

### Language Models and Language Generation

After predicting a distribution over the next output symbols P(t<sub>i</sub> = k|t<sub>1:i-1</sub>), a token t<sub>i</sub> is chosen and its corresponding embedding vector is fed as the input to the next step.



- Teacher-forcing: during training the generator is fed with the ground-truth previous word even if its own prediction put a small probability mass on it.
- It is likely that the generator would have generated a different word at this state in **test time**.

#### Sequence to Sequence Problems

Nearly any task in NLP can be formulated as a sequence to sequence (or condionated generation) task i.e., generate output sequences from input ones. Input and output sequences can have different lengths.

- Machine Translation: source language to target language.
- Summarization: long text to short text.
- Dialogue (chatbots): previous utterances to next utterance.

### **Conditioned Generation**

- While using the RNN as a generator is a cute exercise for demonstrating its strength, the power of RNN gnerator is really revealed when moving to a conditioned generation or enconder-decoder framework.
- Core idea: using two RNNs.
- Encoder: One RNN is used to encode the source input into a vector  $\overrightarrow{c}$ .
- Decoder: Another RNN is used to decode the encoder's output and generate the target output.
- At each stage of the generation process the context vector d is concatenated to the input t i and the concatenation is fed into the RNN.

#### **Encoder Decoder Framework**



## **Conditioned Generation**

- This setup is useful for mapping sequences of length *n* to sequences of length *m*.
- The encoder summarizes the source sentence as a vector c.
- The decoder RNN is then used to predict (using a language modeling objective) the target sequence words conditioned on the previously predicted words as well as the encoded sentence  $\vec{c}$ .
- The encoder and decoder RNNs are trained jointly.
- The supervision happens only for the decoder RNN, but the gradients are propagated all the way back to the encoder RNN.

#### Sequence to Sequence Training Graph



#### **Neural Machine Translation**



## Machine Translation BLEU progress over time



#### [Edinburgh En-De WMT]

<sup>0</sup>SOUICE: http://www.meta-net.eu/events/meta-forum-2016/ slides/09\_sennrich.pdf

## **Decoding Approaches**

- The decoder aims to generate the output sequence with maximal score (or maximal probability), i.e., such that ∑<sup>n</sup><sub>i=1</sub> P(Î<sub>i</sub>|Î<sub>1:i-1</sub>) is maximized.
- The non-markovian nature of the RNN means that the probability function cannot be decomposed into factors that allow for exact search using standard dynamic programming.
- Exact search: finding the optimum sequence requires evaluating every possible sequence (computationally prohibitive).
- Thus, it only makes sense to solving the optimization problem above approximately.
- Greedy search: choose the highest scoring prediction (word) at each step.
- This may result in sub-optimal overall probability leading to prefixes that are followed by low-probability events.

### **Greedy Search**



Figure 6.4: (a) Search space depicted as a tree. (b) Greedy search.

<sup>0</sup>Source: [Cho, 2015]

#### **Beam Search**

- Beam search interpolates between the exact search and the greedy search by changing the size K of hypotheses maintained throughout the search procedure [Cho, 2015].
- We first pick the K starting words with the highest probability
- At each step, each candidate sequence is expanded with all possible next steps.
- Each candidate step is scored.
- The K sequences with the most likely probabilities are selected and all other candidates are pruned.
- The search process can halt for each candidate separately either by reaching a maximum length, by reaching an end-of-sequence token, or by reaching a threshold likelihood.
- The sentence with the highest overall probability is selected.

<sup>0</sup>More info at: https://machinelearningmastery.com/ beam-search-decoder-natural-language-processing/

## Conditioned Generation with Attention

- In the encoder-decoder networks the input sentence is encoded into a single vector, which is then used as a conditioning context for an RNN-generator.
- This architectures forces the encoded vector  $\vec{c}$  to contain all the information required for generation.
- It doesn't work well for long sentences!
- It also requires the generator to be able to extract this information from the fixed-length vector.
- "You can't cram the meaning of a whole %&!\$# sentence into a single \$&!#\* vector!" -Raymond Mooney
- This architecture can be can be substantially improved (in many cases it) by the addition of an attention mechanism.
- The attention mechanism attempts to solve this problem by allowing the decoder to "look back" at the encoder's hidden states based on its current state.

#### Conditioned Generation with Attention

- The input sentence (a length *n* input sequence *x*<sub>1:n</sub>) is encoded using a biRNN as a sequence of vectors *c*<sub>1:n</sub>.
- The decoder uses a soft attention mechanism in order to decide on which parts of the encoding input it should focus.
- At each stage *j* the decoder sees a weighted average of the vectors *c*<sub>1:n</sub>, where the attention weights (*α*<sup>*j*</sup>) are chosen by the attention mechanism.

$$\vec{c}^j = \sum_{i=1}^n \vec{\alpha}^j_{[i]} \cdot \vec{c}_i$$

• The elemements of  $\vec{\alpha}^j$  are all positive and sum to one.

#### Conditioned Generation with Attention

- Unnormalized attention weights are produced using a feed-forward network MLP taking into account the decoder state at time j (s
  <sub>j</sub>) and each of the vectors c
  <sub>j</sub>.
- These unnormalized weights are then normalized into a probability distribution using the softmax function.

$$\begin{aligned} \operatorname{attend}(c_{1:n}, \hat{t}_{1:j}) &= c^{j} \\ c^{j} &= \sum_{i=1}^{n} \alpha_{[i]}^{j} \cdot c_{i} \\ \alpha^{j} &= \operatorname{softmax}(\tilde{\alpha}_{[1]}^{j}, \dots, \tilde{\alpha}_{[n]}^{j}) \\ \tilde{\alpha}_{[i]}^{j} &= \operatorname{MLP}^{\operatorname{att}}([s_{j}; c_{i}]), \end{aligned}$$

• The encoder, decoder, and attention mechanism are all trained jointly in order to play well with each other.

#### Attention



### Attention and Word Alignments

 In the context of machine translation, one can think of MLP att as computing a soft alignment between the current decoder state s
 *i* (capturing the recently produced foreign words) and each of the source sentence components c
 *i*.



Fig. 2. Visualization of the attention weights  $\alpha_j^t$  of the attention-based neural machine translation model [32]. Each row corresponds to the output symbol, and each column the input symbol. Brighter the higher  $\alpha_j^t$ .

#### Figure: Source: [Cho et al., 2015]

#### Other types of Attention

#### Summary

Below is a summary table of several popular attention mechanisms (or broader categories of attention mechanisms).

| Name                  | Alignment score function                                                                                                                                                                                | Citation             |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Additive(*)           | $	ext{score}(oldsymbol{s}_t,oldsymbol{h}_i) = \mathbf{v}_a^	op 	ext{tanh}(\mathbf{W}_a[oldsymbol{s}_t;oldsymbol{h}_i])$                                                                                 | Bahdanau2015         |
| Location-Base         | $lpha_{t,i} = 	ext{softmax}(\mathbf{W}_a oldsymbol{s}_t)$                                                                                                                                               | Luong2015            |
|                       | Note: This simplifies the softmax alignment max to only depend on<br>the target position.                                                                                                               |                      |
| General               | $	ext{score}(oldsymbol{s}_t,oldsymbol{h}_i) = oldsymbol{s}_t^	op \mathbf{W}_a oldsymbol{h}_i$                                                                                                           | Luong2015            |
|                       | where $\mathbf{W}_a$ is a trainable weight matrix in the attention layer.                                                                                                                               |                      |
| Dot-Product           | $	ext{score}(oldsymbol{s}_t,oldsymbol{h}_i)=oldsymbol{s}_t^	opoldsymbol{h}_i$                                                                                                                           | Luong2015            |
| Scaled Dot-           | $	ext{score}(oldsymbol{s}_t,oldsymbol{h}_i) = rac{oldsymbol{s}_i^{	op}oldsymbol{h}_i}{\sqrt{n}}$                                                                                                       | Vaswani2017          |
| Froduct(-)            | Note: very similar to the dot-product attention except for a scaling                                                                                                                                    |                      |
| Self-<br>Attention(&) | Relating different positions of the same input sequence. Theoretically<br>the self-attention can adopt any score functions above, but just<br>replace the target sequence with the same input sequence. | Cheng2016            |
| Global/Soft           | Attending to the entire input state space.                                                                                                                                                              | Xu2015               |
| Local/Hard            | Attending to the part of input state space; i.e. a patch of the input image.                                                                                                                            | Xu2015;<br>Luong2015 |

(\*) Referred to as "concat" in Luong. et al., 2015 and as "additive attention" in Vaswani, et al., 2017. (^) It adds a scaling factor  $1/\sqrt{n}$ , motivated by the concern when the input is large, the softmax function may have an extremely small gradient, hard for efficient learning. (&) Also, referred to as "intra-attention" in Cheng et al., 2016 and some other papers.

Figure: Source: https://lilianweng.github.io/lil-log/ 2018/06/24/attention-attention.html



# Thanks for your Attention!

#### **References** I



#### Cho, K. (2015).

Natural language understanding with distributed representation. arXiv preprint arXiv:1511.07916.

 Cho, K., Courville, A., and Bengio, Y. (2015).
 Describing multimedia content using attention-based encoder-decoder networks. IEEE Transactions on Multimedia, 17(11):1875–1886.