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Introduction to Neural Networks

• Very popular machine learning models formed by units called neurons.
• A neuron is a computational unit that has scalar inputs and outputs.
• Each input has an associated weight w .
• The neuron multiplies each input by its weight, and then sums them (other

functions such as max are also possible).
• It applies an activation function g (usually non-linear) to the result, and passes it

to its output.
• Multiple layers can be stacked.



Activation Functions

• The nonlinear activation function g has a crucial role in the network’s ability to
represent complex functions.

• Without the nonlinearity in g, the neural network can only represent linear
transformations of the input.

0Source:[Goldberg, 2016]



Feedforward Network with two Layers
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Brief Introduction to Neural Networks

• The feedforward network from the picture is a stack of linear models separated
by nonlinear functions.

• The values of each row of neurons in the network can be thought of as a vector.
• The input layer is a 4-dimensional vector (~x), and the layer above it is a

6-dimensional vector (~h1).
• The fully connected layer can be thought of as a linear transformation from 4

dimensions to 6 dimensions.
• A fully connected layer implements a vector-matrix multiplication, ~h = ~xW .
• The weight of the connection from the i-th neuron in the input row to the j-th

neuron in the output row is W[i,j].

• The values of ~h are transformed by a nonlinear function g that is applied to each
value before being passed on as input to the next layer.

0Vectors are assumed to be row vectors and superscript indices
correspond to network layers.



Brief Introduction to Neural Networks

• The Multilayer Perceptron (MLP) from the figure can be written as the following
mathematical function:

NNMLP2(~x) = ~y

~h1 = g1(~xW 1 + ~b1)

~h2 = g2(~h1W 2 + ~b2)

~y = ~h2W 3

~y = (g2(g1(~xW 1 + ~b1)W 2 + ~b2))W 3.

(1)



Network Training

• When training a neural network one defines a loss function L(ŷ , y), stating the
loss of predicting ŷ when the true output is y.

• The training objective is then to minimize the loss across the different training
examples.

• Networks are trained using gradient-based methods.
• They work by repeatedly computing an estimate of the loss L over the training

set.
• They compute gradients of the parameters with respect to the loss estimate, and

moving the parameters in the opposite directions of the gradient.
• Different optimization methods differ in how the error estimate is computed, and

how moving in the opposite direction of the gradient is defined.



Gradient Descent

0Source: https://sebastianraschka.com/images/faq/
closed-form-vs-gd/ball.png
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Online Stochastic Gradient Descent

• The learning rate can either be fixed throughout the training process, or decay as
a function of the time step t .

• The error calculated in line 3 is based on a single training example, and is thus
just a rough estimate of the corpus-wide loss L that we are aiming to minimize.

• The noise in the loss computation may result in inaccurate gradients (single
examples may provide noisy information).

0Source:[Goldberg, 2016]



Mini-batch Stochastic Gradient Descent
• A common way of reducing this noise is to estimate the error and the gradients

based on a sample of m examples.
• This gives rise to the minibatch SGD algorithm

• Higher values of m provide better estimates of the corpus-wide gradients, while
smaller values allow more updates and in turn faster convergence.

• For modest sizes of m , some computing architectures (i.e., GPUs) allow an
efficient parallel implementation of the computation in lines 3-6.

0Source:[Goldberg, 2016]



Some Loss Functions

• Hinge (or SVM loss): for binary classification problems, the classifier’s output is a
single scalar ỹ and the intended output y is in {+1,−1}. The classification rule
is ŷ = sign(ỹ), and a classification is considered correct if y · ỹ > 0.

Lhinge(binary)(ỹ , y) = max(0, 1− y · ỹ)

• Binary cross entropy (or logistic loss): is used in binary classification with
conditional probability outputs. The classifier’s output ỹ is transformed using the
sigmoid function to the range [0, 1] , and is interpreted as the conditional
probability P(y = 1|x).

Llogistic(ŷ , y) = −y log ŷ − (1− y) log(1− ŷ)



Some Loss Functions

• Categorical cross-entropy loss: is used when a probabilistic interpretation of
multi-class scores is desired. It measures the dissimilarity between the true label
distribution y and the predicted label distribution ỹ .

Lcross-entropy(ŷ , y) = −
∑

i

y[i] log(ŷ[i])

• The predicted label distribution of the categorical cross-entropy loss (ŷ ) is
obtained by applying the softmax function the last layer of the network ỹ :

ŷ[i] = softmax(ỹ)[i] =
eỹ[i]∑
j eỹ[j]

• The softmax function squashes the k -dimensional output to values in the range
(0,1) with all entries adding up to 1. Hence, ŷ[i] = P(y = i|x) represent the class
membership conditional distribution.



The Computation Graph Abstraction

• One can compute the gradients of the various parameters of a network by hand
and implement them in code.

• This procedure is cumbersome and error prone.
• For most purposes, it is preferable to use automatic tools for gradient

computation [Bengio, 2012].
• A computation graph is a representation of an arbitrary mathematical

computation (e.g., a neural network) as a graph.
• Consider for example a graph for the computation of (a ∗ b + 1) ∗ (a ∗ b + 2):

• The computation of a ∗ b is shared.
• The graph structure defines the order of the computation in terms of the

dependencies between the different components.



The Computation Graph Abstraction
• Te computation graph abstraction allows us to:

1. Easily construct arbitrary networks.
2. Evaluate their predictions for given inputs (forward pass)

3. Compute gradients for their parameters with respect to arbitrary scalar
losses (backward pass or backpropagation).

• The backpropagation algorithm (backward pass) is essentially following the
chain-rule of differentiation1.

1A comprehensive tutorial on the backpropagation algorithm over the
computational graph abstraction:
https://colah.github.io/posts/2015-08-Backprop/

https://colah.github.io/posts/2015-08-Backprop/


Deep Learning Frameworks

Several software packages implement the computation-graph
model. All these packages support all the essential
components (node types) for defining a wide range of neural
network architectures.

• TensorFlow (https://www.tensorflow.org/): an open source software
library for numerical computation using data-flow graphs originally developed by
the Google Brain Team.

• Keras: High-level neural network API that runs on top of Tensorflow as well as
other backends (https://keras.io/).

• PyTorch: open source machine learning library for Python, based on Torch,
developed by Facebook’s artificial-intelligence research group. It supports
dynamic graph construction, a different computation graph is created from
scratch for each training sample. (https://pytorch.org/)

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/


Questions?

Thanks for your Attention!
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