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Abstract—Word embeddings (WEs) often reflect biases present
in their training data, and various bias mitigation and evalu-
ation techniques have been proposed to address this. Existing
benchmarks for comparing different debiasing methods overlook
two factors: the choice of training words and model hyper-
parameters. We propose a robust comparison methodology that
incorporates them using nested cross-validation, hyper-parameter
optimization, and the corrected paired Student’s t-test. Our
results show that when using our evaluation approach many
recent debiasing methods do not offer statistically significant
improvements over the original hard debiasing model.

Index Terms—Bias, Word Embeddings, Natural Language
Processing

I. INTRODUCTION

Word embeddings, which encode word meanings into dense
vectors based on the distributional hypothesis, have been found
to exhibit stereotypical biases that affect identity groups (e.g.,
gender, race, religion) present in the textual data on which
they are trained [1]. An example of biases found in word
embeddings includes relationships such as “man is to doctor
as woman is to nurse.”

Previous research has addressed this issue by introduc-
ing metrics designed to quantify bias within word embed-
ding models, such as the Word Embedding Association Test
(WEAT) [2] and Relative Negative Sentiment Bias (RNSB)
[3]. Additionally, debiasing algorithms have been developed
to mitigate these biases by manipulating vector representations
through algebraic operations. Examples include Hard Debias
(HD) [1] and Double Hard Debias (DHD) [4].

A previous study [5] highlighted that existing debiasing
methods cannot be readily compared using bias metrics due to
three confounding factors: (1) the reliance on different word
sets when applying bias mitigation algorithms, (2) leakage
between the training words used by mitigation methods and
the evaluation words used by metrics, and (3) inconsistencies
in normalization transformations among mitigation algorithms.
To address these issues, the authors developed a methodology
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for comparing bias mitigation algorithms that controls for
these three factors.

While this methodology aims to ensure fair comparability
by minimizing variability not attributable to the algorithms
themselves, it overlooks two crucial sources of variability: (1)
the selection of words used for training and evaluating the
debiasing models, and (2) the hyper-parameters of the debias-
ing models. We argue that to achieve a truly fair comparison
between bias mitigation algorithms, these sources of variability
must also be addressed. This involves robustly controlling
and comparing algorithms to ensure that the results are not
influenced by specific combinations of words and hyper-
parameters, thereby preventing circumstantial advantages.

In this paper, we aim to improve the fairness of algo-
rithm comparisons by addressing the limitations of previ-
ous methodologies. Recognizing the operational similarities
between bias mitigation and supervised learning algorithms,
we adapt established supervised learning techniques to the
bias mitigation context. Specifically, we propose a robust
comparison framework that utilizes nested cross-validation [6]
for hyper-parameter optimization and applies the corrected
resampled t-test [7] for statistical significance testing, drawing
from well-established practices in supervised learning.

II. RELATED WORK

A. Bias Measurement

In order to quantify the bias present in word embedding
models, several bias measurement metrics have been devel-
oped. Below we describe the metrics used in this study.

The Word Embedding Association Test (WEAT) [2] cal-
culates the degree of association between a set of words
representing social groups and a second set of words that,
in a fair representation, should be neutral but are often
biased toward one group. Additionally, the authors of WEAT
proposed another metric, the WEAT Effect Size (WEAT ES),
which offers a normalized measure of the difference in the
distributions of associations between the biased group and the
neutral word set.

Relative Norm Distance (RND) [8] measures the relative
strength of association between two sets of words, as described
earlier.

Relative Negative Sentiment Bias (RNSB) [3] assesses the
negativity of the words associated with a social identity group,



based on the principle that in fair conditions, all groups should
exhibit equal levels of negativity.

The Relational Inner Product Association (RIPA) [9] calcu-
lates the dot product between words in both sets, similar to
previous metrics.

Finally, the Embedding Coherence Test (ECT) [10] is de-
signed to measure the association between the two sets of
words, similar to the approach used in the previous metrics.

Despite their differing methodologies for quantifying bias in
word embedding models, these metrics have been integrated
into a common framework within the WEFE Library [11],
which also standardizes the word sets used.

Within the library, these metrics share a common interface
where each metric operates over a query that receives two
word sets, labeled as “target” and “attribute.” The metrics then
estimate the bias present in a word embedding model based
on the relationships between these word sets.

As described by Badilla et al. [11], the word sets used by
these metrics are:

1) Attributes: words that represent attitudes, traits, char-
acteristics, occupations, among others. In a fair setting,
these attributes should have equal associations with
individuals from each social group (e.g. home, wedding,
nurse, professional, etc).

2) Target: words are used to denote specific social identity
groups defined by criteria such as gender, religion, or
race (e.g. woman, man, daughter, son, etc).

B. Bias Mitigation

Bias mitigation algorithms for word embeddings aim to
reduce the bias in the models by performing various algebraic
operations on the vectors. The algorithms considered in our
study are described below.

Hard Debias (HD) [1] functions by learning the “bias
direction” in the embedding model and subtracting it from
words that should not be biased.

Double Hard Debias (DHD) [4] is a modification of the
previous method, where the authors argue that word frequency
in the training corpus affects bias in the resulting word
embedding model. Their algorithm aims to account for this
frequency in the debiasing process.

Repulsion Attraction Neutralization (RAN) [12] is a method
that aims to mitigate bias by adjusting vectors: it repels highly
biased words, attracts them to their original representations,
and neutralizes them relative to the bias direction.

Lastly, Half Sibling Regression (HSR) [13] treats bias as
noise and employs a confounding-noise-elimination approach
to remove bias from the word embedding model.

Despite their differences, these algorithms can be integrated
into a common framework, as demonstrated by the WEFE
library [11], which allows them to be used interchangeably.
These algorithms operate by first learning the bias present in
a word embedding model from a set of words, referred to as
the ”bias definition“, and then removing this bias from a set
of ”objective“ words.

This process is analogous to supervised learning, where a
model learns from labeled data and then applies the learned
transformation to new data. Moreover, these models contain
hyper-parameters that must be manually set before training.
Following this approach, the algorithms in the WEFE library
are implemented using scikit-learn’s fit-transform interface,
similar to how supervised learning methods are structured.

The word sets used for the mitigation process are named
differently across various algorithms but can be generalized
into three categories, as proposed in [5]:

1) Objective: Words to which the bias mitigation process
is applied. (e.g. engineer, doctor, family, etc)

2) Bias Definition: Word pairs derived from two contrast-
ing identity groups utilized by mitigation algorithms
to learn and address the intended bias direction. (e.g
(she/him,woman/man,mom/dad, etc)

3) Gender Specific: words that are associated with gender
by definition but do not necessarily define the identity
group. (e.g. testosterone, womb, beard, etc)

C. Bias Mitigation Comparison

In [5], the authors identify three key issues affecting fair
comparisons of word embeddings bias mitigation algorithms:
1) inconsistent word sets used for training, 2) data leakage
between training and evaluation words, leading to inflated
results, and 3) inconsistencies in normalization practices on
the embedding space across different algorithms.

To address these issues and reduce variability, the authors
proposed a methodology for comparing bias mitigation algo-
rithms in a more controlled setting. Their approach involves
three key steps:

1) Standardization: Standardizing the word sets used by
both bias mitigation algorithms and bias measurement
metrics to ensure consistency across comparisons.

2) Separation of Data: Constraining overlap of word
sets between measurement metrics and mitigation algo-
rithms, similar to train-test splitting in machine learning.

3) Normalization Control: Controlling vector normaliza-
tion as a pre-processing step to ensure uniformity across
algorithms.

This approach aims to enable fairer comparisons between
algorithms by controlling for variables that might introduce
variability into the results, ensuring that observed differences
are attributable to the algorithms themselves rather than exter-
nal factors.

Using this methodology, the authors conducted experiments
comparing the algorithms under controlled conditions. The re-
sults demonstrated that when the methodology’s variables are
controlled, algorithm performance becomes more consistent.
This consistency is measured by computing the standard devi-
ation of metric variations for each method (HD, DHD, HSR,
and RAN) before (baseline setting) and after employing the
methodology. The average standard deviation across metrics
(WEAT, WEAT ES, RND, RNSB, RIPA, and ECT) was also
computed, and a p-value was obtained from a two-sided, two-



sample t-test comparing the average standard deviations be-
tween the proposed methodology and the baseline. In addition,
an analysis of how each component of the methodology affects
the comparison of the algorithms was performed. The results
showed that while each component individually improved the
consistency of the comparisons, it was the combination of
all three that resulted in a statistically significant reduction
in variability.

While this methodology makes a valuable contribution to
comparing word embedding debiasing methods, it lacks a
robust estimate of the generalization of bias reduction for
each method. This limitation arises from not addressing two
key sources of variability: (1) the word sets used to train
and evaluate bias, and (2) the fixed hyper-parameters in the
algorithms.

Neglecting these factors adds variability to the compar-
isons, potentially favoring one algorithm over another and
compromising fairness. This underscores the need for a more
comprehensive approach that accounts for these variables.

III. PROPOSED METHODOLOGY

In this section, we propose a methodology designed to
enable a more robust comparison of bias mitigation algorithms
than that of [5]. Our approach begins with hyper-parameter
optimization for word embeddings debiasing algorithms using
nested cross-validation. We then apply statistical testing to
evaluate the performance of each algorithm, utilizing a cor-
rected paired t-test [7]. This test is specifically designed to
compare cross-validated results while accounting for the viola-
tion of independence assumptions inherent in cross-validation.
This methodology is inspired by the standard approach used
for statistically comparing supervised learning models and
leverages the operational similarities between bias mitigation
algorithms and supervised learning models.

Bias mitigation algorithms and supervised learning algo-
rithms share operational similarities that facilitate comparative
analysis. The processes of bias mitigation and measurement
closely parallel the processes of training and evaluation in
supervised learning models, as shown in Table I.

In supervised learning, training and evaluation typically
involve using a portion of the data (the training set) to train
the model, while the remaining data (the test set) is used
for evaluation. A similar approach is taken in bias mitigation
algorithms, where the algorithms learn and mitigate bias using
a set of bias-defining words and then measure bias using a
target set. Since these sets are similarly defined, they can be
compared to the training and test sets, as noted in [5].

In addition to the comparisons mentioned above, another
similarity between the two types of algorithms is the pres-
ence of hyper-parameters. Hyper-parameters are parameters
in learning algorithms that must be set before training the
classification model [14]. These parameters influence various
aspects of the learning process, significantly impacting the
behavior and effectiveness of the algorithm. Examples of
hyper-parameters include the maximum depth in decision

Fig. 1: Nested Cross Validation diagram.

trees, the learning rate in gradient descent, and the number
of neighbors in KNN classification.

Given the significant impact of hyper-parameters on both
the learning process and the algorithmic performance, the
selection of appropriate values is crucial. The goal is to
identify the combination of hyper-parameters that minimizes
the model error. Different techniques are used to achieve this.
In our methodology, we use nested cross-validation combined
with grid search, which is specifically tailored for bias reduc-
tion algorithms. This approach provides a robust assessment
of generalization and helps mitigate overfitting, both critical
factors when comparing bias mitigation strategies.

A. Nested Cross-Validation

Nested cross-validation [6] involves optimizing hyper-
parameters by testing all possible combinations on the entire
data set using a grid search. The process begins by dividing the
data into outer folds, each consisting of a training and a test
set. Within each iteration, the training set is further split into
inner training and testing folds. A model is trained on each
inner training set for every hyper-parameter combination and
tested on the corresponding inner test set. The best-performing
hyper-parameter combination is then used to train a model on
the outer training set, which is subsequently tested on the outer
test set. This process is illustrated in Figure 1.

This technique enables robust model comparison by pre-
venting overfitting and allowing for the generalization of
models to new, unseen data [15].



Aspect Supervised Learning Bias Mitigation
Objective Train a model to predict an output Reduce bias in a word embedding model
Data used Set of labeled data Set of word pairs
Training data Train set, part of the set of labeled data. Bias definition
Testing data Test set, part of the labeled data not used for

training
Target

Performance Evaluation Testing model’s performance with metrics (accu-
racy, precision, etc)

Measure bias with bias measurement metrics
(WEAT, RND, etc)

TABLE I: Comparative table between supervised learning and bias mitigation process.

Algorithm Hyper-parameters
HD svd solvers
DHD svd solvers
HSR Alpha
RAN Epochs, Theta, Neighbours, Learning Rate, Weights

TABLE II: Hyper-parameters in bias mitigation algorithms

B. Hyper-parameters in bias mitigation algorithms

As discussed earlier, bias mitigation algorithms, like super-
vised learning algorithms, also have hyper-parameters. Table II
presents the hyper-parameters identified for each bias mitiga-
tion algorithm that could potentially impact their effectiveness
in reducing bias. Below, we briefly describe these hyper-
parameters.

1) Hard Debias: For the Hard Debias (HD) algorithm, we
identify one significant hyper-parameter: “PCA args”, which
includes the hyper-parameters used in Principal Component
Analysis (PCA) [16] to derive the bias subspace. A particularly
notable parameter within this category is “svd solvers”,
which determines the solver method employed by the PCA.

2) Double Hard Debias: Similar to Hard Debias, the only
hyper-parameter identified for this algorithm is the solver used
in Principal Component Analysis (PCA).

3) Half Sibling Regression: In the case of Half Sibling
Regression (HSR), the parameter α plays a crucial role in
balancing the emphasis between the residual sum of squares
and the sum of squares in the regression process. Specifically,
when α = 0, the regression reduces to a simple linear
regression. According to the authors who introduced the HSR
method [13], an optimal value of α is suggested to be 60.

4) Repulsion Attraction Neutralization: For Repulsion At-
traction Neutralisation (RAN) we identify a total of 6 hyper-
parameters used in the algorithm. These are listed below:

1) PCA args: Same as HD and DHD, RAN performs a
PCA to find the bias subspace, meaning it includes the
hyper-parametes of the PCA, where the most relevant is
“svd solvers”.

2) Epochs: Represents the number of times that the min-
imization in the algorithms is done. In the original
implementation is 300.

3) Theta: Indirect bias threshold to select the neighbours
for the repulsion set, neighbours with indirect bias grater
than theta are considered for the repulsion set. This is
set to 0.05 in the original implementation.

4) Neighbours: The number of neighbors considered for
the repulsion set is determined by this parameter. In the

original implementation, 100 neighbors are included in
this set.

5) Learning Rate: This parameter dictates the learning rate
employed by the optimizer throughout the optimization
process. Originally this value is set to 0.01.

6) Weights: These represent the initial weights assigned to
each function. In the original implementation, they are
uniformly initialized as [0.33, 0.33, 0.33]

C. Comparing Algorithms

Our proposed methodology for a robust comparison of bias
mitigation algorithms involves two main components. First,
we perform hyper-parameter optimization by adapting the
nested cross-validation technique from supervised learning.
This choice is due to the advantages mentioned in Section
III-A, where nested cross-validation enables robust model
comparison, aligning with the goals of our methodology. Sec-
ond, we leverage the results from this optimization to compare
bias mitigation algorithms, not only by utilizing different
sets of words but also by evaluating them at their optimal
performance using the hyper-parameters that maximize bias
reduction.

Given the similarities between bias mitigation algorithms
and supervised learning algorithms, we propose adapting
nested cross-validation to optimize the hyper-parameters of
these algorithms.

To implement this methodology, we first select a set of word
pairs to serve as our entire dataset. This dataset is analogous
to the labeled data used in supervised learning. We then define
a grid of hyper-parameters to be tested.

The nested cross-validation process involves dividing the
word pair set into 10 folds, each containing bias definition
(training) and target (testing) sets. Within each fold, the
training portion is further subdivided into bias definition (train)
and target (test) sets. We then iterate over the grid of hyper-
parameters, testing each combination by performing the debi-
asing process and measuring the resulting bias. After testing
all combinations, we select and store the combination that
yields the best results. This optimal combination is then used
to debias the entire training set of the fold and is evaluated on
the test set.

By testing all combinations of hyper-parameters on the
entire dataset, this approach provides more reliable results.
The process is outlined in pseudo-code in Algorithm 1 and
illustrated in Figure 2.



Fig. 2: Diagram illustrating nested cross-validation for bias
mitigation algorithms.

Algorithm 1 Nested cross-validation for Bias Mitigation

Define grid of hyper-parameter combinations
Define set of wordPairs
Divide wordPairs into k folds each with train and
validation sets
Define bestBias and bestParam
for fold in folds do

Divide train set of fold into train and test
for param in grid do

algorithm.fit(train, param)
algorithm.transform()
bias← algorithm.measureBias(test)
if bestBias >bias then

bestBias← bias
bestParam← param

end if
end for
algorithm.fit(train, bestParam)
algorithm.transform(validation)
bias← algorithm.measureBias()

end for

After performing nested cross-validation, we use the bias
measurements obtained from each outer fold to conduct the
bias mitigation and measurement process. The process for each
fold is executed using the optimal hyper-parameters identified
during the cross-validation.

Our comparison method involves analyzing the results from
each of the 10 folds, providing a comprehensive evaluation of
each algorithm. By using subsets of the data for bias mitigation
and measurement across these folds, we obtain more robust
results that are not dependent on any single data set. This

Hyper-parameter Values
HD

Solver auto, full, arpack, randomized
DHD

Solver auto, full, arpack, randomized
HSR

Alpha 0,10,30,60,80
RAN

Neighbours 50,100,200
Theta 0.002,0.005,0.1

TABLE III: Hyper-parameters grids used for experiments.

approach enables us to apply statistical tests to assess the
significance of the results.

We employ the corrected paired t-test [7] to compare
the reduction of bias between a baseline model and a bias
mitigation algorithm based on a chosen metric. This test is
crucial because it addresses the limitations of the standard
paired t-test when applied to cross-validated results. In cross-
validation, the folds are not independent, which violates a key
assumption of the standard paired t-test, leading to potentially
misleading conclusions. The corrected paired t-test accounts
for this lack of independence, providing a more accurate and
reliable comparison of average performance statistics across
cross-validated folds.

IV. EXPERIMENTS

After defining our methodology, we conducted experiments
to test its effectiveness. For this, we adopted the methodology
proposed in [5], adhering closely to their experimental setup
and utilizing the same word embedding model (GloVe-Wiki-
Gigaword-3001). All of our experiments focused on gender
bias, adopting the constraints they proposed and using the
same word sets. We extended the word sets to define bias and
target more comprehensively. Specifically, for our gender bias
experiments, the word pairs used to define the target and bias
sets included male and female group terms, such as: (she/he,
woman/man, girl/boy, lady/gentleman, etc.). This extension
increases the number of examples available for iteration2.

To assess the optimal hyper-parameter combinations, we
conduct experiments using each of the six bias measurement
metrics described in Section II-A as optimization criteria3.
Our goal is to identify the hyper-parameters that maximize
the debiasing effect for each bias mitigation algorithm.

A. Grid Definition

The hyper-parameter grids used for each algorithm are
presented in Table III. We briefly discuss each of these grids
below.

1https://github.com/RaRe-Technologies/gensim
2The word sets and code used in our experiments for repro-

ducibility purposes can be found at https://github.com/mzambrano1/
Bias-Mitigation-And-Hyperparameters

3Due to space limitations, we only report results obtained with WEAT,
RNSB, and RIPA as optimization criteria.



Algorithm ∆ Weat ∆ RND ∆ RIPA ∆ RNSB ∆ ECT ∆ WEATES

WEAT
HD (Baseline) -0.1 ± 0.031 -0.234 ± 0.102 -0.186 ± 0.035 -0.073 ± 0.024 0.14 ± 0.113 -0.325 ± 0.114
DHD -0.033 ± 0.009 (↓) -0.024 ± 0.011 (↓) -0.035 ± 0.012 (↓) -0.004 ± 0.012 (↓) 0.008 ± 0.026 (↓) -0.056 ± 0.036 (↓)
RAN -0.099 ± 0.037 (=) -0.233 ± 0.101 (=) -0.19 ± 0.036 (↑) -0.074 ± 0.034 (=) 0.15 ± 0.123 (=) -0.341 ± 0.129 (=)
HSR -0.124 ± 0.032 (↑) -0.022 ± 0.092 (↓) -0.157 ± 0.036 (↓) -0.042 ± 0.033 (↓) -0.151 ± 0.082 (↑) -0.229 ± 0.082 (=)

RNSB
HD (Baseline) -0.1 ± 0.031 -0.234 ± 0.102 -0.186 ± 0.035 -0.072 ± 0.026 0.14 ± 0.113 -0.325 ± 0.114
DHD -0.033 ± 0.009 (↓) -0.024 ± 0.011 (↓) -0.035 ± 0.012 (↓) 0.002 ± 0.018 (↓) 0.008 ± 0.025 (↓) -0.056 ± 0.036 (↓)
RAN -0.096 ± 0.037 (=) -0.234 ± 0.102 (=) -0.19 ± 0.035 (↑) -0.075 ± 0.033 (=) 0.154 ± 0.108 (=) -0.351 ± 0.152 (=)
HSR -0.124 ± 0.031 (↑) -0.02 ± 0.09 (↓) -0.156 ± 0.036 (↓) -0.04 ± 0.031 (↓) -0.148 ± 0.08 (↓) -0.248 ± 0.095 (=)

RIPA
HD (Baseline) -0.1 ± 0.031 -0.234 ± 0.102 -0.186 ± 0.035 -0.072 ± 0.022 0.14 ± 0.113 -0.325 ± 0.114
DHD -0.033 ± 0.009 (↓) -0.024 ± 0.011 (↓) -0.035 ± 0.012(↓) -0.003 ± 0.013 (↓) 0.008 ± 0.026 (↓) -0.056 ± 0.036 (↓)
RAN -0.096 ± 0.041 (=) -0.233 ± 0.101 (=) -0.191 ± 0.034 (↑) -0.073 ± 0.034 (=) 0.144 ± 0.133 (=) -0.358 ± 0.158 (=)
HSR -0.125 ± 0.03 (↑) -0.02 ± 0.09 (↓) -0.157 ± 0.036 (↓) -0.039 ± 0.035 (↓) -0.143 ± 0.077 (↓) -0.261 ± 0.072 (=)

TABLE IV: Mean change in bias produced by Bias Mitigation Algorithms across 10 runs of nested cross-validation for three
optimization metrics: WEAT, RNSB, and RIPA. A more negative result indicates a greater reduction in bias in the final model,
except in the case of the ECT metric, where a more positive result signifies less bias. Next to each result, an arrow or equal
sign indicates whether the outcome is significantly better, worse, or equal to the baseline (Hard Debias).

Fig. 3: Violin Plot of WEAT results for all experiments.

1) Hard Debias and Double Hard Debias: As the only
hyper-parameter to adjust in both algorithms is the solver for
the PCA, we test each of the possible values available for this
hyper-parameter.

2) Half Sibling Regression: For Half Sibling Regression’s
single hyper-parameter, we utilize the values presented in
Table III. This allows us to explore the parameter’s impact
on the process, starting with a simple linear regression and
incrementally increasing the value.

3) Repulsion Attraction Neutralization: For Repulsion At-
traction Neutralization, we include the hyper-parameters
“neighbours” and “theta” in the grid. These parameters are
used to construct the repulsion set and interact with each other,
defining the size of this set. The values are shown on Table
III.

B. Results

After conducting hyper-parameter optimization on all four
bias reduction algorithms mentioned in Section II-B, using all
six bias measurement metrics as optimization criteria, we gain
insights in three key areas: (1) a comparative analysis of the

algorithms, (2) an understanding of how the choice of op-
timization metric influences the results, and (3) identification
of the hyper-parameters that optimize the performance of each
algorithm.

Table IV presents the mean results obtained for each algo-
rithm after applying the proposed methodology, along with
the corresponding standard deviation. Bias is evaluated in
each run using the optimal hyper-parameters identified, with
measurements based on the metrics described in Section II-A.
Each metric serves as an optimization criterion, and the table
displays results for three of these metrics: WEAT, RNSB, and
RIPA. Figure 3 shows a violin plot of the WEAT metric results
across all runs, using all metrics as optimization criteria, for
all four algorithms.

The results in Table IV involve calculating the difference in
bias within the model before and after applying the mitigation.
In this context, a more negative value indicates greater bias
mitigation, except for the ECT metric, where the interpretation
is reversed. An equal or arrow symbol is placed next to each
result to indicate whether it is significantly better, worse, or
equal to the baseline, according to a corrected paired t-test [7]



with a significance level of 0.05. This correction is necessary
because, as noted by Nadeau and Bengio (2003) [7], the
common t-test is not suitable for these experiments due to
the assumption of independent samples, which does not hold
in this case. Hard Debias is used as the baseline because it
was the first algorithm proposed.

From these results, it is evident that none of the more
recently proposed algorithms outperform Hard Debias. Both
Double Hard Debias and Half-Sibling Regression generally
perform worse, while Repulsion Attraction Neutralization is
statistically equivalent to Hard Debias. This highlights that
despite efforts to improve bias mitigation over the years, the
initial Hard Debias algorithm remains as effective as any
subsequent approaches.

In addition, Figure 3 shows that although Double Hard
Debias (DHD) is the least effective in mitigating bias, it
produces the most stable results according to the WEAT
metric. This is consistent with the number of hyper-parameters
in the method, but it is also noteworthy because HD has the
same hyper-parameter but a significantly larger variance.

Another insight gained from these results is that the choice
of optimization metric has minimal impact, as the metrics ap-
pear to guide the optimization process similarly. This implies
that all metrics offer comparable information about the bias
of the embedding models and can be used interchangeably.

In Table V we present the results showing the most
frequently chosen optimal hyper-parameter combination for
each algorithm. For HD and DHD, the best hyper-parameter
is ”auto” for the solver, which is also the default value.
In contrast, for HSR and RAN, the best hyper-parameters
differ from those proposed by the authors. Interestingly, for
HSR, the optimal value for α is 0, which effectively turns
the regression used by the algorithm into a standard linear
regression, contrary to what was proposed by the authors of
the method [13], who suggested a value of 60.

Algorithm Hyper-parameter Value
HD solver auto
DHD solver auto
HSR alpha 0
RAN theta,neighbour 0.02,200

TABLE V: Best hyper-parameters combination obtained for
each algorithm.

V. CONCLUSIONS

In this paper, we presented a methodology for robustly
comparing word embedding bias mitigation algorithms by
exploiting the similarities between supervised learning and
bias mitigation algorithms, incorporating techniques such as
nested cross-validation from supervised learning.

This methodology enables a robust comparison of bias
mitigation algorithms by addressing the variability introduced
by different word sets and hyper-parameters. It also facilitates
statistical analysis to assess the significance of the results.

Our experiments revealed that despite advancements in
bias mitigation algorithms, none significantly outperforms the
original Hard Debiasing approach proposed by Bolukbasi et
al. [1].

These results align with those reported in [5], which also
showed that when algorithms are compared in controlled
settings, the differences in performance are not substantial.
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