
A Text Similarity Meta-Search Engine Based on Document Fingerprints and Search
Results Records

Felipe Bravo-Marquez, Gaston L’Huillier, Sebastián A. Rı́os, Juan D. Velásquez
Web Intelligence Consortium Chile Research Centre

Department of Industrial Engineering
University of Chile

Santiago, Chile
fbravo@dcc.uchile.cl, {glhuilli,srios,jvelasqu}@dii.uchile.cl

Abstract—The retrieval of similar documents from the Web
using documents as input instead of key-term queries is not
currently supported by traditional Web search engines. One
approach for solving the problem consists of fingerprint the
document’s content into a set of queries that are submitted to
a list of Web search engines. Afterward, results are merged,
their URLs are fetched and their content is compared with the
given document using text comparison algorithms. However,
the action of requesting results to multiple web servers could
take a significant amount of time and effort. In this work, a
similarity function between the given document and retrieved
results is estimated. The function uses as variables features
that come from information provided by search engine results
records, like rankings, titles and snippets. Avoiding therefore,
the bottleneck of requesting external Web Servers. We created a
collection of around 10,000 search engine results by generating
queries from 2,000 crawled Web documents. Then we fitted the
similarity function using the cosine similarity between the input
and results content as the target variable. The execution time
between the exact and approximated solution was compared.
Results obtained for our approximated solution showed a
reduction of computational time of 86% at an acceptable level
of precision with respect to the exact solution of the web
document retrieval problem.

Keywords-Meta-Search Engine, Similar Document Retrieval,
Document Fingerprinting, Query Generation, Ranking Fusion

I. INTRODUCTION

Web search engines have been developed with the aim
of solving information requirements from users, allowing
them to represent these requirements in elaborated query lan-
guages which support Boolean operators, wild-card queries,
exact phrases, etc. However, common users employ few key
terms to represent their information needs [18].

As proposed in [11], Web search queries can be grouped
into three categories: Informational queries, which seek
general information of a specific topic; navigational queries,
which seek a single Web page that the user has in mind;
and transactional queries which represent an intention from
the user related with an action, like purchasing products or
downloading a file. In [9], a different information require-
ment is described, that consists of retrieving the most similar
documents from the Web using as input a given document

instead of a query. In this work, this problem is called as
the Web Document Similarity Retrieval Problem (WDSRP).
Likewise, we define a Web Document Similarity Retrieval
Tool (WDSRT) as a Web tool which receives a document
as input and returns the most similar Web documents scored
and ranked by a similarity measure.

Different contexts in which a WDSRT could be applied,
are presented below:

1) Plagiarism Detection: In the educational context, the
massification of the Web and search engines, has
contributed to access large bibliographic contents,
much larger than the generally needed for students’
assignments. Likewise, the quality of reviewers’ task
for authenticity checking in delivered documents has
been compromised [12]. The mechanism that most
reviewers have adopted for authenticity checking, is
to extract and submit suspicious text passages to Web
search engines. Unfortunately, commercial search en-
gines represent queries by HTTP request URIs which
are limited by a maximum size, admitting therefore, a
fixed number of characters in their queries. For which
the suspicious text needs to be chopped into several
parts. Then, checking all results, the original document
manually searched in all retrieved documents. This
process can take a significant amount of time, and
the detection of malicious activities is not guaranteed.
In this context, a WDSRT would clearly facilitate the
reviewer’s labor.

2) Duplicate detection: Near-Duplicate Detection, as de-
scribed by [8], consists in identifying documents with
slight textual or formatting differences within a docu-
ment corpus. Thus, it is usually used by Web crawlers
for avoiding indexing the same content many times.
Given this, a WDSRT can be used to identify Web
duplicates as high scored results.

3) Impact analysis: A strong relationship between how
many times a text passage is present in the Web and
the impact of its content could be assumed. Likewise,
we could analyze the impact of a text passage founded

2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology

978-0-7695-4513-4/11 $26.00 © 2011 IEEE

DOI 10.1109/WI-IAT.2011.27

146

2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology

978-0-7695-4513-4/11 $26.00 © 2011 IEEE

DOI 10.1109/WI-IAT.2011.27

146

in Web sources like news, forums, or blog entries
by submitting it to a WDSRT. Moreover, the number
of high scored results retrieved could be used as an
impact measure.

4) Related ideas retrieval: An idea, a patent, a poem, or
a new theory could be used as input in a WDSRT in
order to find similar ideas, the author would not need
to define key terms related to the idea.

The Web search engine architecture proposed in [3], [11]
based on building an inverted index over crawled Web
documents, could be used for a WDSRT implementation.
This data structure allows the retrieval of “relevant” doc-
uments from a query, looking up the query terms in the
index, merging their post lists and returning top k relevant
results. Hence, documents could be used as input in Web
search engines and the WDSRP would be solved. However,
the hardware resources required in order to build a search
engine architecture supporting documents as queries are
enormous. Indeed, some of the reasons why commercial
search engines restrict length of queries, are that long queries
take a huge computation time, are hard to cache, and are
usually composed of many irrelevant terms.

Considering the high resources required for building a
complete search engine with a high coverage of the Web,
the idea of using external inverted index from commercial
search engines makes a lot of sense. Furthermore, in order
to have a better coverage from the Web, results from
several search engines could be combined into a meta-search
engine architecture1. Below we present two critical factors to
consider for building a WDSRT using a meta-search engine
approach:

1) Input size restriction: In order to deal with the
query length restriction described above, the document
must be chopped into several pieces of text called
fingerprints to be used as query inputs. Therefore,
a document query generation strategy needs to be
developed.

2) Absence of a similarity measure: Commercial search
engines don’t return a similarity measures between
the query and results. One possible strategy is to
download the content from high ranked URLs and
compute their similarities with the input using text
comparison algorithms. However, requesting URLs to
several Web servers could result in a bottleneck if we
want to return results to the final user in few seconds.
Hence, the similarity could be estimated directly using
information provided by using search engines results,
like rankings, titles, and snippets [10].

This work’s contribution is a text similarity meta-search
engine that given a document, represents its content with a
set of generated queries and using several search engines

1A meta-search engine is a a tool, which aggregates results from multiple
search engines in a single list.

retrieves from the Web similar documents from this source.
Then, estimates the similarity between the input and results
using a function which consider as features just the informa-
tion provided by search engines result records, like rankings,
titles and snippets (result summary) of retrieved results.
Hence, results can be scored and ranked in few seconds, and
issues like developing a complete search engine architecture
from scratch, requesting results from several Web servers or
computing text processing algorithms over large document
collections are avoided.

The structure of this paper is defined as follows: In
section II, previous work on document fingerprinting, meta
search engines, and previous developments for WDSRP
are reviewed. Then, in section III, two query generation
techniques are introduced. In section IV, the meta-search
engine query submission and the results gathering procedure
are explained. In section V the extraction of features from
gathered results is explained, where Zipf-like and snippet
similarity features are presented. In section V-C we present a
similarity function estimation based on the extracted features
as predictors and the real cosine similarity as target variable.
In section VI the experimental setup is explained, and results
are discussed. Finally, in section VII the main conclusions
of this paper and future work are detailed.

II. RELATED WORK

In this section, different techniques for document query
generation and fingerprinting are reviewed. Also, the latest
approaches for meta-search engines and ranking fusion
methods are discussed. Finally, previous solutions to the
WDSRP are presented.

A. Document Fingerprinting and Query Generation

Fingerprinting techniques are document content represen-
tation approaches based on the extraction of moderately
sized text chunks from its content [21]. They are commonly
used in plagiarism detection [15] by comparing them rather
than the whole content. Therefore, partial similarities within
the documents can be identified. Instead, in the WDSRP con-
text the fingerprints are used to represent a given document
in a set of queries.

Fingerprint approaches proposed in [15], [9], [21] con-
sider the selection of a fixed number of document sentences.
These approaches are closely related to the selection of se-
quential words limited by a character length or the extraction
of k-grams. Some of the criteria proposed for sentence selec-
tion are: sentences containing non lexical terms (like UFO
or GNU), proportionally distributed sentences, or sentences
containing terms that achieve the highest tf-idf score from
the vector space model [3].

Furthermore, considering that queries are often treated
as bag of words by search engines, compositions of term
extractions can be used as document fingerprints [17]. Some
deterministic approaches consider selecting terms with the

147147

highest frequency or tf-idf. And some probabilistic ap-
proaches consider a randomized extraction of terms us-
ing probabilities proportional with the frequency or tf-idf
weights.

B. Meta Search Engines

As described in [16], meta-search engines provide a single
unified interface, where a user enters a specific query, the
engine forwards it in parallel to a list of search engines,
whose results are collated and ranked into a single list.
Hence, data fusion strategies must be considered in order to
achieve a global ranking function over several local ranked
results [10]. Some ranking fusion techniques are presented
below: Borda-count is a ranking fusion method discussed in
[2]. The model is based on democratic voting, where Web
documents are considered as candidates and search instances
as voters. For each search instance a result is given c−(r−1)
points where r is the local ranking and c is the total number
of points to be distributed between all retrieved results. For
documents that are not retrieved by a search instance, the
remaining points are divided evenly among them [10]. Once
results from different search instances are gathered, points
from documents retrieved in different search instances are
added. Finally, documents are ranked in order of total points.
Weighted Borda-fuse is a variation from Borda-count where
search engines are not treated equally using a search engine
confidence factor in the point assignment. Finally, Bayes-
fuse uses a probabilistic naive Bayes approach for estimating
the probability of a result to be relevant to a query.

C. Web Document Similarity Retrieval Tools

The WDSRP has been studied by different researchers,
where most solutions of the problem have been developed
in the context of plagiarism detection. The first approach
are Text Similarity Search Engines (TSSEs), where all issues
from a commercial search Engine like crawling and indexing
are considered. These kinds of search engines allow the
submission of large text passages providing information
retrieval operations over document databases. Turnitin2 and
eTBLAST3 are well known examples of this approach. In
the second approach external commercial search engines are
used. Fingerprinting techniques for document representation
into a set of queries are used, and similar candidate doc-
uments from the search engines are retrieved. Pereira and
Ziviani propose in [9] to retrieve the complete text from
top ranked results, and compare them using text comparison
strategies, like Patricia trees and Shingles method.

Furthermore, Zaka presented in [21] an approach where
results snippets are compared with the generated query using
the cosine similarity from the vector space model. In [5]
a scoring function is proposed based on result ranks, but
the model was only tested using short paragraphs as inputs

2http://turnitin.com [online: accessed 03-03-2011]
3http://etest.vbi.vt.edu/etblast3/ [online: accessed 03-03-2011]

instead of whole documents. Duplichecker4 submits each
sentence directly into a single search engine without merg-
ing results or similarity score. Another example, Plagium5

delivers ranked and scored results using Yahoo! as external
search engine. Finally, a third example Copyscape6 allows
submitting documents and retrieving them using Google
search API.

III. DOCUMENT FINGERPRINTING FOR QUERY
GENERATION

In this section, a query generation procedure based on
fingerprinting techniques is presented. The main goal is
to retrieve the most similar results to the document D
given as input. In order to have a good representation
of the document’s content, we combine two fingerprinting
techniques. The first one, is a Hypergeometric Language
Model [4], [19] which creates bag of words queries using
a randomized term extraction without replacement. The
second one is an n-gram random sample approach, which
extracts proportionally distributed random n-grams. Both
techniques are complementary, where the former prioritizes
relevant terms without considering the order in which the
words appeared within the document, and the latter aims to
ensure the coverage of the documents content. It is important
to consider that before the query generation procedure, the
input text should be cleaned by removing stopwords and
special characters.

A. Hypergeometric Language Model

As stated in [11], given a document D, from which
a vocabulary V can be extracted, a language model MD

from D is a function that maps a probability measure over
strings drawn from V . Language models are used as ranking
functions in information retrieval, scoring documents with
the probability of generating the query q given the document
language model MD. In our query generation task, the prob-
abilistic distribution from the language model is used as a
randomized term extraction procedure. The reason for using
randomized term permutations, is that similar documents
from D do not necessarily contain words in the same order.
Furthermore, as a strong but realistic assumption, search
engines, where queries will be submitted, treat user natural
text queries following a bag of words property [3].

The Hypergeometric Language Model (HLM) proposed
in [4] is an extension of language models inspired in the
multivalued hypergeometric distribution [7], where terms are
extracted one by one without replacement. The property
contributes to the hypothesis that a new term gives more
information to a search engine than a repeated term in
the generated query. This concept has been used before to
identify the most relevant terms in document corpuses [1].

4http://www.duplichecker.com [online: accessed 03-03-2011]
5http://www.plagium.com/ [online: accessed 03-03-2011]
6http://www.copyscape.com/ [online: accessed 03-03-2011]

148148

Hypergeometric Language Models are generalized in [19].
The model and the query generation algorithm are presented
in the following.

Consider that the extracted vocabulary is determined by
V = {t1, . . . , tm}, where each term ti in the document
has an assigned positive value wi stored in vector −→w =
{w1, . . . , wm}. These values can be determined by several
weighting approaches, like term frequency or tf-idf weights.

A generated query q can be modeled as a sequence of
tokens defined by q = s1, . . . sn, where each token sj ∈ q
is an integer taking values in {1 . . .m} ∈ V . By using
the chain rule of probabilities, the probability of generating
the query q from a language model MD, can be defined
as, P (q|MD) = P (s1|MD) . . . P (sn|s1, . . . , sn−1,MD). In
HLM, the conditional distribution of extracting the token
sj given MD is estimated by P̂ (sj |MD) =

wsj
||−→w ||1

where
||−→w ||1 =

∑m
i=1 |wi|. Then, considering the non replacement

extraction property from HLM, the conditional distribution
of generating the token sk given an accumulated generated
query q = s1, . . . sn and the language model MD, is
determined by P̂ (sk|q,MD) = wsk

||−→w ||1−
Pn
j=1 wsj

taking a
zero value if the token value was already generated.

The query generation algorithm extract sequence of terms
using the probabilities described above. The number of terms
in a query is assigned by a parameter length. The algorithm
gives higher probabilities of occurrence to most relevant
terms using the weighting approach as relevant criteria
parameter (term frequency in our case). The extraction is
modeled with a multinomial distribution parametrized by
(
−→w
||−→w ||1

). The non replacement property is modeled by recon-
structing the multinomial distribution after each extraction,
where the dimensions of the −→w and V vectors are reduced
removing the corresponding extracted terms. The process is
presented in the following algorithm:

Algorithm 1: HLM-QueryGeneration
Data: D, length, weightApproach
Result: q
Initialize q = {};
V ← ExtractVocabulary(D);
−→w ← ExtractWeigthVector(D,weigthApproach);
Multinomial m← CreateMultinomial

(−→w
||−→w ||1

)
;

i← 0 ;
while i < length and −→w .size() > 0 do

s← extractRandomElement(m) ;
q.add(s) ;
−→w .remove(s) ;
V.remove(s) ;
m← CreateMultinomial

(−→w
||−→w ||1

)
;

i← i+ 1;
return q;

In order to achieve a set of different queries, the algorithm
can be used several times over the same document, where

the random extractions will produce queries different from
each other.

B. Random n-gram sample

An n-gram or n-shingle for a document is a sequence of
n contiguous tokens from its content. The Random n-gram
sample (RNS) fingerprint approach aims to extract a sample
of proportionally distributed n-grams ensuring that the terms
of a query belong to the same topic. Algorithm parameters
are the length of n-grams n, the number of desired queries
Q, and document D. It starts extracting an array of all
words of the document called unigrams. Then, each n-
gram is built by the extraction of words from unigrams
from position pos to pos+n, where the pointer makes a
random jump proportional to the number of words divided
by Q. The iteration continues until the word pointer is lower
than the size of unigrams. Each jump is multiplied by a
random number between 1 − ε and 1 + ε with ε ∈ [0, 1],
ensuring the construction of different query sets by running
the algorithm several times over the same document. The
process is detailed in algorithm 2.

Algorithm 2: RNS-QueryGeneration
Data: D,n,Q, ε
Result: sample
Initialize sample = {};
unigrams← ExtractWords(D);
start← n ∗ random(1− ε, 1 + ε);
while start+ n < unigrams.size() do

end← start+ n;
ngram← getNgram(unigrams, start, end) ;
sample.add(ngram) ;
start← end+(unigrams.sizeQ)∗random(1−ε, 1+ε);

return sample;

IV. QUERY SET SUBMISSION AND MERGING RESULTS

At this part of the process, document D is represented by
a set of queries Q generated with the combination of both
fingerprinting techniques previously described. Assuming
that we have a set of S external search engines available,
each query q ∈ Q is submitted to a search engine s ∈ S.
Each search engine of S should receive a considerable
amount of queries in order to ensure the retrieval of similar
documents from D for each search engine. As the coverage
of the Web is potentiated by using several search engines,
the document retrieval is based on the union of the indexed
documents presented in each of the search engines. The
hypothesis is that if the inverted indexes of S contains
documents with a higher similarity to D, these documents
should be responded in many search instances in the top
ranks.

For every query, an asynchronous request into the as-
signed search engine is executed, therefore avoiding falling
into a busy-wait state. Then, for all search instances, each

149149

search engine will respond the top k results retrieved. Then
we use the information contained in these results to create
a set of queryAnswer objects. A queryAnswer object ω is
defined as a tuple (s, q, r) , where r represents the ranking
assigned by search engine s for query q. Furthermore, the
URL, the title and the snippet from the result are stored as
variables in the object.

After all asynchronous requests have been responded to,
we proceed to merge the queryAnswer objects retrieved
from multiple search instances into new sets of objects
called metaAnswer. A metaAnswer object Ω (|Ω| ≥ 1) is
a set of queryAnswer objects ω, where all queryAnswer
ω ∈ Ω share the same URL value. We will have therefore,
one metaAnswer object for every distinct Web document
retrieved, and the cardinality of a metaAnswer, will represent
the number of hits of a Web document for all our search
instances.

Once we have merged all queryAnswers in metaAnswers,
we proceed to extract features from the metaAnswers in
order to estimate the similarities between D and each
different Web document retrieved.

V. FEATURE EXTRACTION AND ESTIMATED SIMILARITY
FUNCTION

The set of retrieved metaAnswer objects contains a list of
similar document candidates from D. Nevertheless, a simi-
larity measure between these documents and D still needs to
be calculated. Considering that we do not want to fetch these
URLs from several Web servers and compute the similarities
using text comparison algorithms, the similarities must be
estimated using information contained in the metaAnswer
set. In this section, we present two different features, that
will be used as variables in the estimated similarity function.

A. Zipf-Like Feature

The Zipf-like Feature (ZLF) based on the Zipf-like scoring
function [4] aims to concentrate in one single value the
cardinality of a metaAnswer and the rankings of their
queryAnwers in a similar manner that Borda-Fuse does. The
Zipf law [22] has been used in the natural language commu-
nity for the analysis of term frequencies in documents. As
stated by [13], if f denotes the popularity of an item and r
denotes its relative rank, then f and r are related as f = c

rβ
,

where c is a constant and β > 0. If β = 1, then f follows
exactly the Zipf law, otherwise, is it said to be Zipf-like.

In [13], the Web popularity is modeled as the Zipf law,
where the relative frequency with which Web pages are
requested for the rth most popular Web page is proportional
to 1/r. Furthermore, in this work we propose to model the
relevance of a search engine result with a Zipf-like distribu-
tion, considering that the relevance of results presented in a
Web search engine are inversely related to their rankings.

In this work, all queries are generated from the same
document and have a common underlying search intention. If

a specific URL has been founded by many search instances
and top ranked, the probability of being similar to D should
be high. Thus, the value of the Zipf-like feature for a
metaAnswer Ω is expressed by

ZLF (Ω) =
1
|Q|

∑
ω∈Ω

cs
rβs

(1)

The value is normalized by the number of queries requested,
in order to represent ZLF (Ω) ∈ [0, 1] and making it
independent from the number of queries. The parameters
c and β are confidence factors in the quality of search
engines’ results, where cs ∈ [0, 1] represents the average
relevance of the best response of s, and βs represents the
decay factor of the results’ relevance while the amount of
retrieved results increases. These values make the feature
flexible for treating each different search engine in a proper
manner. Nevertheless, finding the optimal values of these
parameters is beyond the scope of this work, so we set for
each search engine both parameter values to 1. Thus, an
exact Zipf law is being assumed.

B. Title-Snippet similarity Feature

The title and the summary (a.k.a snippet) of a search en-
gine result record provide partial information of the pointed
document’s content. It’s important to consider that snippets
from commercial search engines are query-dependent and
usually contain several query terms [11]. Furthermore, in
a particular metaAnswer object, we have several search
instances where the same Web document was retrieved and
different terms from D were used in the queries. Thus, we
can assume that snippets from a same metaAnswer are not
equal to each other. We proceed therefore, to combine these
snippets together with the document title into a vector space
model aiming to build an approximated representation of the
pointed document’s content.

The vector space model [14] is a vectorial representation
of documents, where each term of the vocabulary is a
dimension. We propose using term frequency weights for the
given document D and Boolean weights for the metaAnswer
Ω in order to avoid that repeated passages in snippets bias the
representation. The Title-Snippet similarity Feature (TSF) is
the cosine similarity between vector space models from D
and Ω presented in the following formula:

TSF (Ω) =
∑|V |
i=1(w(ti, D)× w(ti,Ω))√∑|V |

i=1 w(ti, D)2 ×
√∑|V |

i=1 w(ti,Ω)2

(2)

C. Estimated Similarity Function

Once the proposed features are obtained, we proceed
to estimate the similarity between document D and each
document retrieved. We assume that features ZLF and TSF
are strongly related with the similarity between D and
the Web document pointed by a metaAnswer Ω. Thus, we

150150

propose modeling the similarity sim using the following
hypothesis function:

sim(D,Ω) ≈ h(ZLF (Ω), TSF (Ω); θ) (3)

The function h is used to predict the target variable
sim and parameters θ can be fitted using methods such
as Artificial Neural Networks (ANNs) [20], among other
regression techniques.

VI. EXPERIMENTS AND ANALYSIS

According to the previously described procedures, a pro-
totype was implemented7. It was developed in the Java pro-
gramming language (JDK 1.6.0) and as external search
engines, Google and Yahoo! were used. As described in [4],
for each search engine 2 HLM queries and 3 RNS queries
were generated, where the length for both query generation
techniques was settled to 6.

In this section the dataset construction and the hypothesis
function training procedure is presented, together with the
evaluation of the precision and the performance of the
proposed model.

A. Dataset Construction

In order to fit the function, a dataset of training examples
Z must be constructed.

Z = {(ZLF (Ω), TSF (Ω), (sim(D,Ω))∗}

Each training example z ∈ Z is a triple composed by
the values of ZLF and TSF from a metaAnswer Ω and the
similarity between the given document D and the content
of the Web document pointed by Ω.

The dataset must be created by submitting documents to
the meta-search engine and computing the features from the
retrieved metaAnswers. Then the value of sim is obtained
by fetching the URLs from results, extract their content and
compute the similarity with the document used as input. We
propose using the cosine similarity from the vector space
model as similarity value.

Once a large dataset has been collected, the function
is trained using several regression approaches like linear
regressions, neural networks and support vector regressions
among others. Finally the function h is used to score and
rank the retrieved metaAnswers and results are presented to
the final user.

B. Validating the Features and Fitting the hypothesis

In order to create the dataset Z, the content from several
crawled Web pages was extracted and submitted to the
prototype. A total of 12,019 results were retrieved, of which
the features were calculated. Afterwards the URLs from
these results were fetched, their content was extracted, and

7http://146.83.5.15:8080/Docode/ [online: accessed 03-03-2011]

the cosine similarity between them and the documents given
as inputs was computed.

In order to validate our pair of features, the correlation
between them and the similarity variable was calculated. We
obtained a correlation of 0.42 and 0.36 for ZLF and STF
respectively. Therefore, there is enough evidence to validate
the assumption that our features are related to the target
variable. Another interesting insight was that the correlation
between proposed features was low (0.13). We can conclude
that each feature provides different information to describe
the target variable.

Using cross-validation we trained a linear regression and
a single hidden layer ANN over the data-set, where the
correlation between the predicted and the observed variable
was measured together with the root mean squared error
(RMSE). We obtained a correlation of 0.52 for the linear
regression and of 0.55 for the ANN, and a RMSE of
0.25 and 0.27 respectively. Considering that the regression
achieved the lowest value of RMSE and acceptable level of
correlation, we stayed with it as our hypothesis function h
with the following coefficients θ:

h(ZLF, TSF ; θ) = 0.1 + 0.9× ZLF + 0.7× TSF (4)

Figure 1. Obtained hyperplane and dataset mapped in TSF, ZLF, and
target feature.

As presented in Figure 1, all data points are distributed
in the TSF, ZLF, and the target value sim according to a
hyperplane determined by the proposed linear regression.

C. Retrieval Rate, Precision and Performance

The goal of this experiment is to measure the effectiveness
of the model at satisfying user information needs. In this
case, those needs are related to the WDSRP. We created

151151

α level hits retrieval rate
0.50 1794 0.895
0.60 1680 0.838
0.70 1528 0.762
0.80 1383 0.690
0.90 1118 0.558
0.95 1076 0.537
0.99 895 0.447

Table I
RETRIEVAL RATE

a dataset of 2, 004 documents crawled from the Web. The
content of these documents was submitted into the prototype,
where the content of the top 5 results scored with the
hypothesis function were stored, together with the cosine
similarities with the documents given as inputs. Considering
that each document used as input in the experiment was
extracted from the Web, we know that there is at least one
Web document similar to it. Therefore, we consider as a hit
in our experiment, in case of retrieving at least one similar
document within the top 5 results.

The number of hits at a similarity level α was defined as
the number of cases when at least one of the top 5 results has
a similarity greater or equal than α. Likewise, we define the
retrieval rate as the number of hits divided into the number of
attempts. Table I shows the retrieval rate at different values
of α.

The precision at k is an information retrieval evaluation
measure [11], which measures the fraction of relevant results
retrieved within the top k results.

precision at (k) =
relevant results retrieved within top k

total top k results retrieved
(5)

In this experiment, results which the cosine similarity with
the document given as input was greater than or equal an
α ∈ [0.5, 0.9] similarity cutoff value, were considered as
relevant. In Figure 2 precision curves for different α values
are presented.

Results presented above indicate that, even by increasing
the cutoff similarity for considering a result as relevant,
similar documents are often retrieved and ranked on top.

We also compared the performance between the estimated
similarity function and the process of computing the cosine
similarity by fetching URLs from results. We obtained an
average execution time of 2.7 seconds for the former and
of 18.82 for the latter. Hence, our approximated solution
achieves a 86% reduction of execution time.

VII. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, there are no methods for
the Web document similarity retrieval problem (WDSRP)
based on a text similarity meta-search engine architecture
which uses mainly information provided by the search
engines’ results records. This work’s experimental results

Figure 2. Precision at k at different relevant cutoff

showed that our approximated solution is able to satisfy
the requirements of a WDSRT with acceptable levels of
precision and providing a high reduction of execution time.

As future work, the predictive ability of the model could
be improved by identifying new features from result records.
Here, approaches from fields like computational linguis-
tics and natural language processing could be adopted.
Furthermore, these techniques could also be used in the
query generation task. For example, the sentence selection
approach used for automatic text summarization in [6] could
be applied in order to identify sentences providing relevant
information like names, places or dates.

ACKNOWLEDGMENT

Authors would like to thank “Instituto Sistemas Comple-
jos de Ingenierı́a” (ICM: P-05-004- F, CONICYT: FBO16;
www.isci.cl) for their continuous support; FONDEF project
(DO8I-1015) entitled, DOCODE: Document Copy Detection
(www.docode.cl); and the Web Intelligence Research Group
(wi.dii.uchile.cl).

REFERENCES

[1] Giambattista Amati. Information theoretic approach to in-
formation extraction. In Flexible Query Answering Systems,
volume 4027 of Lecture Notes in Computer Science, pages
519–529. Springer Berlin / Heidelberg, 2006.

[2] Javed A. Aslam and Mark Montague. Models for metasearch.
In SIGIR ’01: Proceedings of the 24th annual international
ACM SIGIR conference on Research and development in
information retrieval, pages 276–284, New York, NY, USA,
2001. ACM.

[3] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern
Information Retrieval. 1999.

152152

[4] Felipe Bravo-Marquez, Gastón LHuillier, Sebastián Rı́os, and
Juan Velásquez. Hypergeometric language model and zipf-
like scoring function for web document similarity retrieval. In
String Processing and Information Retrieval, volume 6393 of
Lecture Notes in Computer Science, pages 303–308. Springer-
Verlag, 2010.

[5] Felipe Bravo-Marquez, Gastón LHuillier, Sebastián Rı́os,
Juan Velásquez, and Luis Guerrero. Docode-lite: A
meta-search engine for document similarity retrieval. In
Knowledge-Based and Intelligent Information and Engineer-
ing Systems, volume 6277 of Lecture Notes in Computer
Science, pages 93–102. Springer-Verlag, 2010.

[6] Jade Goldstein, Mark Kantrowitz, Vibhu Mittal, and Jaime
Carbonell. Summarizing text documents: sentence selection
and evaluation metrics. In Proceedings of the 22nd annual
international ACM SIGIR conference on Research and devel-
opment in information retrieval, SIGIR ’99, pages 121–128,
New York, NY, USA, 1999. ACM.

[7] William L. Harkness. Properties of the extended hypergeo-
metric distribution. Ann. Math. Statist., 36(3):938–945, 1965.

[8] Monika Henzinger. Finding near-duplicate web pages: a
large-scale evaluation of algorithms. In SIGIR ’06: Proceed-
ings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval, pages
284–291, New York, NY, USA, 2006. ACM.

[9] Álvaro R. Pereira Jr. and Nivio Ziviani. Retrieving similar
documents from the web. J. Web Eng., 2(4):247–261, 2004.

[10] Yiyao Lu, Weiyi Meng, Liangcai Shu, Clement T. Yu, and
King-Lup Liu. Evaluation of result merging strategies for
metasearch engines. In WISE, volume 3806 of Lecture Notes
in Computer Science, pages 53–66. Springer, 2005.

[11] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schütze. Introduction to Information Retrieval. Cambridge
University Press, New York, NY, USA, 2008.

[12] H. Maurer, F. Kappe, and B. Zaka. Plagiarism – a survey.
Journal of Universal Computer Science, 12(8):1050–1084,
2006.

[13] S. V. Nagaraj. Web Caching And Its Applications. Kluwer
Academic Publishers, Norwell, MA, USA, 2004.

[14] Gerard Salton, Chung-Shu Yang, and Anita Wong. A vector
space model for automatic indexing. Commun. ACM, 18:613–
620, 1975.

[15] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Win-
nowing: local algorithms for document fingerprinting. In
SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD in-
ternational conference on Management of data, pages 76–85,
New York, NY, USA, 2003. ACM.

[16] Erik Selberg and Oren Etzioni. The metacrawler architecture
for resource aggregation on the web. IEEE Expert, 12:11–14,
1997.

[17] Gabriel L. Somlo and Adele E. Howe. Using web helper agent
profiles in query generation. In AAMAS ’03: Proceedings
of the second international joint conference on Autonomous
agents and multiagent systems, pages 812–818, New York,
NY, USA, 2003. ACM.

[18] Amanda Spink, Dietmar Wolfram, B.J. Jansen, and Tefko
Saracevic. Searching the web: the public and their queries.
J. Am. Soc. Inf. Sci. Technol., 52:226–234, 2001.

[19] Manos Tsagkias, Maarten de Rijke, and Wouter Weerkamp.
Hypergeometric language models for republished article find-
ing. In Proceedings of the 34th Annual International ACM
SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR’ 11, New York, NY, USA, 2011. ACM.

[20] Paul John Werbos. The roots of backpropagation: from or-
dered derivatives to neural networks and political forecasting.
Wiley-Interscience, New York, NY, USA, 1994.

[21] Bilal Zaka. Empowering plagiarism detection with a web
services enabled collaborative network. J. Inf. Sci. Eng.,
25(5):1391–1403, 2009.

[22] George K. Zipf. Human Behavior and the Principle of Least
Effort. Addison-Wesley, 1949.

153153

