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Abstract

We present a system for the task of unsupervised lexical change detection. Given a target word
and two corpora spanning different periods of time, automatically detects whether the word has
lost or gained senses from one corpus to another. Our system employs the temporal referencing
method to obtain compatible representations of target words in different periods of time. This
is done by concatenating corpora of different periods and performing a temporal referencing of
target words i.e., treating occurrences of target words in different periods as two independent
tokens. Afterwards, we train word embeddings on the joint corpus and compare the referenced
vectors of each target word using cosine similarity. Our submission was ranked 6th among 33
teams for subtask 1, obtaining an average accuracy of 0.637, only 0.050 points behind the first
ranked system.

1 Introduction

In the past decade we have seen a rise in academic work on the automatic detection of lexical semantic
change (Tahmasebi et al., 2018; Kutuzov et al., 2018). However, many of these studies are difficult to
compare because of differences in evaluation procedure, languages, corpora, and time periods.

SemEval 2020 Task 1 aims to introduce a simple evaluation framework for unsupervised lexical
semantic change detection (Schlechtweg et al., 2020). The task focuses on four languages: German,
English, Swedish, and Latin. For each language, two corpora (C1 and C2) are provided, each of those
spanning different periods of time (t1 and t2).

The task is divided into two subtasks described below.

1. Subtask 1 - Binary classification: for a set of targets words, decide which words lost or gained senses
between t1 and t2; as annotated by human judges.

2. Subtask 2 - Ranking: rank the same set of target words according to their degree of lexical semantic
change between t1 and t2 (the stronger the change the higher the position in the ranking).

Systems are evaluated against ground truth data annotated by human native speakers (except for Latin,
which was annotated by scholars of Latin) (Schlechtweg et al., 2018).

In this paper, we present our system for detecting semantic change of words in different periods of time.
Our system was solely designed for subtask 1.

The rationale of our approach is to obtain compatible representations of target words in different
periods of time. This is done by concatenating corpora of different periods and performing a temporal
disambiguation of target words. Afterwards, we train word embeddings on the joint corpus and compare
the disambiguated vectors of each target word using cosine similarity. This process is known as temporal
referencing and was proposed in (Dubossarsky et al., 2019).

Our submission was ranked 6th among 33 teams for subtask 1, obtaining an average accuracy of 0.637,
only 0.050 points behind the first ranked system. Temporal referencing is a very simple technique that
despite its simplicity yielded competitive results and outperformed baselines across all languages.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.



2 Related Work

Linguists are well aware that language, even when viewed as a synchronous entity, is full of variation at
all linguistic levels. In spoken language, this kind of variation is the norm.

The detection of lexical change is complex due to the fact that the variation observed in lexical form
between different corpora is not necessarily due to diachronic causes, as it may also be due to other factors
such as the presence of regional dialects.

One of the most challenging aspects of comparing word embeddings trained on different periods of time
is alignment, which is the process of making embeddings models trained on different corpora, compatible
and comparable. Specifically, most cost functions for training word representations are invariant to
rotations. Consequently, the learned embeddings of independent models i.e., models trained from corpora
spanning different periods of time, may not be placed in the same latent space. This problem is known as
the alignment problem. In general, most of the previous approaches to studying lexical change follow a
similar two-step methodology: first compute static word embeddings in each separate period of time, and
then find a way to align the word embedings across different time periods (Yao et al., 2018).

Dubossarsky et al. (2019) proposed the Temporal Referencing method for lexical semantic change
on which this work is based. A single embedding model is trained on a corpus that combines various
diachronic corpora in which the target words (i.e., words on which semantic change will be assessed) are
disambiguated according to the corpus in which they occur. Two models are compared: PPMI (Levy et
al., 2015) and Skip-gram negative sampling (SGNS) (Mikolov et al., 2013b), in two settings: 1) using
alignment and 2) using temporal referencing. Results showed that the SGNS model trained with temporal
referencing exhibits significantly less noise than its aligned counterpart, and for the PPMI model, temporal
referencing significantly reduced the noise level, but to a lesser extent than for SGNS.

The work of Gulordava and Baroni (2011) is based on context vectors to identify semantic change over
time. A co-occurrence matrix with local mutual information (LMI) scores is built (Evert, 2008). Then,
the distributional similarity of each word pair is measured as the cosine product of the corresponding
context vectors. A partitions of Google Book Ngram corpus spanning from 1960s and 1990s is used for
evaluation. The main finding of the study is that the proposed method can successfully detect the semantic
change of words, as well as cases of major diachronic context change.

Kim et al. (2014) developed a method employing prediction-based word embedding models to trace
diachronic semantic shifts. They used incremental updates and Skip-gram with negative sampling (SGNS)
(Mikolov et al., 2013a) as the embedding model. The authors identified words that have changed and the
periods during which they changed.

In (Bamler and Mandt, 2017), the authors propose the dynamic skip-gram model, which is a Bayesian
probabilistic model that combines the skip-gram architecture with a latent continuous time series. The
method is jointly trained over multiple time period and does not require an alignment step. The experi-
mental results showed that both dynamic skip-gram filtering (which conditions only on past observations)
and dynamic skip-gram smoothing (which uses all data) lead to smoothly changing embedding vectors
that are better at predicting word-context statistics at held-out time steps.

In (Yao et al., 2018), a dynamic statistical model was developed to learn time-aware word vector
representations. This model can simultaneously learn time-aware embeddings avoiding the need for
alignment. This model is trained on a corpus of New York Times articles. Additionally, multiple evaluation
strategies of temporal word embeddings are conducted. The qualitative and quantitative tests indicate that
the proposed method not only reliably captures the evolution of words over time, but also consistently
outperforms state-of-the-art temporal embedding approaches on both semantic accuracy and alignment
quality.

Another way of creating dynamic embedding was developed in (Rudolph and Blei, 2018) based on
embeddings of exponential families and latent variables with a random walk Gaussian drift. The key
idea is to restrict the embedding vectors to a single a time slice (Tahmasebi et al., 2018) while sharing
the context vectors across all time points. The authors experimented with three diachronic corpora: 1)
ArXiv’s machine learning papers (2007–2015), 2) ACM’s computer science abstracts (1951–2014), and
3) U.S. Senate speeches (1858–2009). The results from this study suggest that dynamic embeddings



provide a better fit than their static counterparts for working with diachronic corpora and that dynamic
embeddings can also help identify ways in which language changes.

3 System Description

Our system implements the Temporal Referencing method (Dubossarsky et al., 2019), which is based on
the idea of obtaining compatible representations of target words in different periods of time. This is done
by concatenating the two corpora C1 and C2 coming from different periods and performing a temporal
referencing of target words. It is important to remark that our system was designed only to participate in
subtask 1.

Our hypothesis is that if a word exhibits a semantic change over time then it representation should
change too. However, if we independently train word representation for each period of time, our vectors
would not be comparable (because of the stochasticity of neural networks). One approach would be to
perform an alignment on the different embedding models. In contrast, we concatenate for each language
the two temporal corpora (C1 and C2) and referenced target words by appending special temporal symbols
to their tokens. Next, we describe our own implementation of the temporal referencing method. The
process is illustrated in Figure 1.
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Figure 1: Temporal referencing workflow.

The first step is to merge both temporal corpora for each language. Then, for each target word, we add
a special symbol to all its appearances in both corpora, the symbol denoting the corresponding corpus or
period. For example, the target word “attack” becomes “attack t1” in C1 and “attack t2” in C2.

Afterwards, we proceed to merge both corpora, and in this way old and new occurrences of a target
word occur in contexts of words coming from a single vocabulary of non-target terms.

The next step consists of training a distributed representation of the words from the joined corpus. We
use the Continuous Bag of Words (CBOW) model with negative sampling to obtain our word vectors
(Mikolov et al., 2013a). Consequently, our system does not need to align the word embeddings across
different time spans.



Finally, in order to classify whether a target word exhibits semantic change, we calculate the cosine
similarity between the two vectors of each target word. We use a threshold parameter λ to convert the
similarities into binary classes 1 (semantic change) and 0 (no semantic change) 1. The value of λ is
determined experimentally.

4 Experiments

4.1 Data

We carried out our experiments on the SemEval 2020 Task 1 dataset. This dataset is made of pairs of
corpora spanning two different time periods, with one pair for each language: English, German, Latin and
Swedish. The time periods covered in each corpus are shown in Table 1. The number of tokens and target
words for each corpus are shown in Table 2.

Languages t1 t2
English 1810-1860 1960-2010
German 1800-1899 1946-1990

Latin -200-0 0-2000
Swedish 1790-1830 1895-1903

Table 1: Time period covered by each temporal corpus and language.

Languages #tokens-t1 #tokens-t2 Target words
English 6 million 6 million 37 lemmas
German 70 million 72 million 48 lemmas

Latin 1.2 million 9.4 million 40 lemmas
Swedish 71 million 111million 31 lemmas

Table 2: Number of tokens for each temporal corpus and language together with the number of target
words for each language.

4.2 Parameters Settings

We used the Gensim2 package for training our word2vec embeddings. The number of dimensions was
set to 100, the window size was set to 5, and the learning model we used was Continous Bag of Words
(CBOW) with negative sampling. The number of negative samples was set to 5. The classification
threshold of the cosine similarity was set to λ = 0, 61. This value was intuitively adjusted due to the lack
of validation data.

4.3 Baselines

The shared task provides two baseline models described below.

1. Normalized frequency difference (FD): This method counts the frequency of each target word in
each of the two corpora, normalizes these counts by number of words of the corresponding corpus,
and then calculates the absolute difference of these values as a measure of change.

2. Count vectors with column intersection and cosine distance (CNT+CI+CD): this method learns
word representations for the two corpora, then aligns the vectors by intersecting their columns and
measures change using the cosine similarity between the two vectors of a target word.

1Code is available at https://github.com/fdzr/experiments_semeval
2https://radimrehurek.com/gensim/



4.4 Results
Our system was evaluated by contrasting our binary predictions against the manually annotated gold
labels using accuracy (ACC) as evaluation metric.

The classification performance of our model and the two baselines are shown in Table 3.

System English German Latin Swedish Avg
baseline 1 0.432 0.417 0.650 0.258 0.439
baseline 2 0.595 0.688 0.525 0.645 0.613
our system 0.649 0.667 0.525 0.710 0.637

Table 3: Classification accuracy of baselines and our system. The best results per column are shown in
gray.

The results show that our system outperformed both baselines across all languages. Moreover, we
obtained the 6th place for subtask 1 out of 33 participants.

In relation to subtask 2, we made a random submission to meet the competition requirements as shown
in Table 4. It is important to note that these results do not indicate the performance of the temporal
referencing technique in the ranking subtask. We plan to investigate how to adapt our system to this
subtask in future work.

System English German Latin Swedish Avg
our system -0.217 0.014 0.020 -0.150 -0.083

Table 4: Spearman correlation of our random submission to subtask 2.

4.5 Post-Evaluation Results
In this subsection we show experimental results conducted after the release of the gold data. The purpose
of these experiments is to gain more insight into the effect of hyperparameters that we could not calibrate
during the training phase due to the unsupervised nature of this task.

In particular, we experimented with two word embedding architectures CBOW and SGNS, and different
values for the window and the embedding size. The number of negative samples was kept at 5 in all
experiments. The results are depicted in Table 5.

Parameters Languages
architecture window size embedding size English German Latin Swedish Avg

CBOW

2
100

0.568 0.688 0.375 0.742 0.593
5 0.595 0.729 0.500 0.744 0.649
10 0.676 0.750 0.475 0.710 0.653
2

200
0.595 0.708 0.400 0.710 0.603

5 0.649 0.771 0.500 0.774 0.673
10 0.649 0.792 0.525 0.710 0.669

SGNS

2
100

0.568 0.646 0.350 0.710 0.568
5 0.568 0.646 0.350 0.806 0.592
10 0.622 0.688 0.400 0.774 0.621
2

200
0.595 0.688 0.350 0.710 0.585

5 0.595 0.667 0.400 0.774 0.609
10 0.649 0.750 0.450 0.645 0.623

Table 5: Classification accuracy using two word2vec architectures and various parameter settings. The
classification threshold λ was set to 0.5. The best results per column are shown in gray.

Our results indicate that the use of a short context window is not appropriate for this particular task. We
also observed a tendency for CBOW to achieve better results than SGNS. Moreover, the results for Latin
are notoriously worse than for any other language.

In order to better understand the effect of the decision threshold λ on classification performance, we
conducted an additional experiment using different values for this parameter. These experiments are done



using the best configuration found in the previous experiment, which corresponds to a CBOW architecture
with window size 5 and embedding size 200. The results are showed in Table 6.

λ English German Latin Swedish Avg
0.4 0.595 0.750 0.375 0.774 0.623
0.5 0.649 0.771 0.500 0.774 0.673
0.6 0.676 0.646 0.525 0.742 0.647
0.7 0.703 0.458 0.525 0.548 0.559
0.8 0.514 0.354 0.700 0.258 0.456

Table 6: Classification accuracy using different values of λ for the best configuration of the previous
experiment. The best results per column are shown in gray.

We observe that the value of λ produces significant variability in accuracy across the four languages.
Surprisingly, lower values of λ are good for German and Swedish but bad for Latin. This suggests that
this parameter needs to be adjusted independently for each particular language. Furthermore, this also
suggests that evaluation metrics that do not depend on the decision threshold, such as the area under the
ROC curve (AUROC), may be a more appropriate choice for this task.

5 Conclusions

We presented a system for the automatic detection of semantic change in words occurring in two different
periods of time. Our system implements the temporal referencing method (Dubossarsky et al., 2019) in
which compatible representations of target words are obtained and compared by concatenating corpora of
different periods and performing a temporal disambiguation of target words. Our submission, in addition
to outperforming both baselines, ranked 6th place in the binary classification subtask of SemEval 2020
Task 1. These results provide further evidence that temporal referencing is a strong and simple approach
for lexical semantic change detection.

For future work we will explore using representations of words obtained from deep contextualized
models such as ELMO (Peters et al., 2018) and BERT (Devlin et al., 2019). We will also use supervised
approaches for learning a similarity metric for our target words trained on large synthetically generated
data.
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