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Abstract

The most popular sentiment analysis task in Twitter is the automatic classification

of tweets into sentiment categories such as positive, negative, and neutral. State-of-

the-art solutions to this problem are based on supervised machine learning models

trained from manually annotated examples. These models are affected by label spar-

sity, because the manual annotation of tweets is labour-intensive and time-consuming.

This thesis addresses the label sparsity problem for Twitter polarity classification

by automatically building two type of resources that can be exploited when labelled

data is scarce: opinion lexicons, which are lists of words labelled by sentiment, and

synthetically labelled tweets.

In the first part of the thesis, we induce Twitter-specific opinion lexicons by training

words level classifiers using representations that exploit different sources of infor-

mation: (a) the morphological information conveyed by part-of-speech (POS) tags, (b)

associations between words and the sentiment expressed in the tweets that contain

them, and (c) distributional representations calculated from unlabelled tweets. Ex-

perimental results show that the induced lexicons produce significant improvements

over existing manually annotated lexicons for tweet-level polarity classification.

In the second part of the thesis, we develop distant supervision methods for gener-

ating synthetic training data for Twitter polarity classification by exploiting unlabelled

tweets and prior lexical knowledge. Positive and negative training instances are gen-

erated by averaging unlabelled tweets annotated according to a given polarity lexicon.

We study different mechanisms for selecting the candidate tweets to be averaged.

Our experimental results show that the training data generated by the proposed mod-

els produce classifiers that perform significantly better than classifiers trained from

tweets annotated with emoticons, a popular distant supervision approach for Twitter

sentiment analysis.
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Chapter 1

Introduction

Social media platforms and, in particular, microblogging services1 such as

Twitter2, Tumblr3, and Weibo4 are increasingly being adopted by users to

access and publish information about a great variety of topics. These new

mediums of expression enable people to connect to each other, and voice their

opinion in a simple manner (Jansen, Zhang, Sobel and Chowdury, 2009).

Sentiment analysis or opinion mining refers to the application of techniques

from fields such as natural language processing (NLP), information retrieval

and machine learning, to identify and extract subjective information from tex-

tual datasets (Pang and Lee, 2008). One of the most popular sentiment anal-

ysis tasks is the automatic classification of documents or sentences into sen-

timent categories such as positive, negative, and neutral. These sentiment

classes represent the writer’s sentiment toward the topic addressed in the

message.

Sentiment analysis applied to social media platforms has received increasing

interest from the research community due to its importance in a wide range

of fields such as business, sports, and politics. Several works claim that so-

cial phenomena such as stock prices, movie box-office revenues, and political

elections, are reflected by social media data (Bollen, Mao and Zeng, 2011;

Asur and Huberman, 2010; Gayo-Avello, 2013) and that opinions expressed in

those platforms can be used to assess the public opinion indirectly (O’Connor,

Balasubramanyan, Routledge and Smith, 2010).

This thesis focuses on analysing the sentiment of Twitter data. We use Twit-

ter because it is the most widely-used microblogging service and provides

large amounts of freely available public data. We propose machine learning-

1http://en.wikipedia.org/wiki/Microblogging
2http://www.twitter.com
3http://www.tumblr.com
4http://www.weibo.com
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Chapter 1 Introduction

based models to tackle two sentiment analysis tasks: 1) classifying Twitter

words into sentiment categories, and 2) training message-level polarity classi-

fiers from unlabelled messages.

The remainder of this chapter is organised as follows. Section 1.1 presents

a brief description of Twitter. Section 1.2 introduces the supervised machine

learning methods used in this thesis. Section 1.3 states the research prob-

lem that it addresses. Existing solutions to the problem and their limitations

are briefly presented in Section 1.4. The research proposal and the proposed

methods are introduced in Section 1.5. The publications derived from this

work are listed in Section 1.6. The experimental methodology used to eval-

uate the methods is presented in Section 1.7. In Section 1.8, we present an

outline of the thesis’ structure.

1.1 Twitter

Twitter is a microblogging service founded in 2006, in which users post mes-

sages or tweets. It was originally designed to be an SMS-based service where

messages are restricted to 160 characters. Thus, tweets are limited to 140

characters, leaving 20 characters for the username. Twitter users may sub-

scribe to the tweets posted by other users, an action referred to as “following”.

The service can be accessed through the Twitter website or through applica-

tions for smartphones and tablets.

Twitter users have adopted different conventions such as replies, retweets,

and hashtags in their tweets. Twitter replies, denoted as @username, indicate

that the tweet is a response to a tweet posted by another user. Retweets are

used to re-publish the content of another tweet using the format RT @username.

Hashtags are used to denote the context of the message by prefixing a word

with a hash symbol e.g., #obama, #elections, etc. The size restriction and con-

tent sharing mechanisms of Twitter have created a unique dialect (Hu, Tala-

madupula and Kambhampati, 2013) that includes many abbreviations, acronyms,

misspelled words, and emoticons that are not usual in traditional media, e.g.,

omg, loove, or :). Words and phrases that are frequently used during a par-

ticular time period are known as “trending topics”. These topics are listed by

the platform for different regions of the world, and can also be personalised

to the user5.

Twitter has become the most popular microblogging platform with hundreds

5https://support.twitter.com/articles/101125
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1.2 Classification

of millions of users spreading millions of personal posts on a daily basis6. The

rich and great volume of data propagated in it offers many opportunities for

the study of public opinion and for analysing consumer trends (Jansen et al.,

2009). Tweets published by public accounts can be freely retrieved using one

of the two Twitter APIs: 1) the REST search API7, which allows the submission

of queries composed of key terms, and 2) the streaming API8, from which a

real-time sample of public posts can be retrieved. These APIs enable retrieval

of domain-specific tweets restricted to certain words, users, geographical lo-

cation, or time periods, in order to analyse tweets associated with a particular

event or population sample.

1.2 Classification

Classification is the task of predicting a discrete variable y with L possible

categories from examples represented by a set of features or independent

variables x1, x2, . . . , xn in a feature space X . In order to train a classifier we

need to learn a hypothesis function f from a collection of N training examples.

This collection of records has the form (X, Y ), and is usually referred to as the

training dataset. Each entry of the dataset is a tuple (x, y), where x is the fea-

ture vector and y is the class or target label. When the possible outcomes of y

are restricted to binary values, yi ∈ {+1,−1}, ∀i ∈ {1, . . . , N}, the classification

problem is referred to as a binary classification problem.

The process of learning a hypothesis function from a training dataset is re-

ferred to as supervised learning, and there exist many machine learning al-

gorithms for training such functions, many of which are described in (Witten,

Frank and Hall, 2011). The methods used in this thesis are logistic regression

models and support vector machines (SVMs), because they are known to per-

form well on text classification problems (Manning, Raghavan and Schütze,

2008).

1.2.1 Logistic Regression Models

Logistic regression models estimate the posterior probability P (y|x) of a bi-

nary target variable y given the observed values of x by fitting a linear model

to the data. The parameters of the model are formed by a vector of parameters

w, which is related to the feature space X by a linear function. Assuming the

6https://about.twitter.com/company
7https://dev.twitter.com/rest/public/search
8https://dev.twitter.com/streaming/overview
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intercept term is x0 = 1, the linear function has the following form:

hw(x) =
n∑
i=0

wixi = wTx (1.1)

This function hw(x) is mapped into the interval [0, 1] using the logistic or

sigmoid function:

g(z) =
1

1 + e−z
(1.2)

In ridge logistic regression, which is the method applied in this thesis, pa-

rameters w are determined by minimising the following L2-regularised loss

function from a given training dataset of N examples:

min
w

N∑
i=1

log(1 + e−yiw
T xi) +

λ

2
wTw (1.3)

The expression log(1 + e−yiw
T xi) corresponds to the log-likelihood of a prob-

abilistic model in which y given x follows a Bernoulli distribution, and the

parameter λ (λ ≥ 0) is a user-specified regularisation parameter. Several al-

gorithms can be used for optimising w given a training dataset. In this thesis

we use the trust region Newton method (Lin, Weng and Keerthi, 2008) imple-

mented in the LibLinear library (Fan, Chang, Hsieh, Wang and Lin, 2008). This

implementation scales well to large datasets and high-dimensional feature-

spaces.

Once the parameters are estimated, the posterior probability of a testing

example is calculated according to the following expression:

P (y|x) =
1

1 + e−wT x
(1.4)

The classification output is obtained by imposing a decision threshold on the

posterior probability which is normally 0.5.

Logistic regression for multi-class classification, called multinomial logistic

regression, uses the softmax function instead of the sigmoid function:

σ(z)j =
ezj∑K
k=1 e

zk
forj ∈ {1, . . . , L}. (1.5)

A softmax regression model estimates one parameter vector w for each
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class9. The posterior distribution of x for class j is calculated as follows:

P (y = j|x) =
ew

T
j x∑L

l=1 e
wT

l x
(1.6)

The example is normally classified into the class with the highest probability.

Another approach for applying logistic regressions to multi-class problems,

which is the one implemented in LibLinear and used in this thesis, is the one-

vs-the-rest strategy proposed in (Crammer and Singer, 2002). In this strategy,

a single classifier is trained per class, using the examples of that class as the

positive instances and the remaining ones as the negative instances.

1.2.2 Support Vector Machines

A support vector machine (SVM) is a binary classifier aimed at finding a large-

margin hyperplane (ωT ·x+ b) that separates the two class values y ∈ {+1,−1}
according to the feature space represented by x. If the data is linearly sepa-

rable, the optimal hyperplane is the one that maximises the margin between

positive and negative observations in the training dataset formed by N obser-

vations. In the general case, the task of learning an SVM from a dataset is

formalised as the following optimisation problem:

min
w,b

1

2
wTw + C

N∑
i

ξi

subject to yi(w
Txi + b) ≥ 1− ξi,∀i ∈ {1, . . . , N}

ξi ≥ 0 ∀i ∈ {1, . . . , N}

(1.7)

The objective function of the problem combines the length of the parameter

vector and the errors
∑N

i ξi. The parameter C is referred to as the “soft margin

regularization parameter” and controls the sensitivity of the SVM to possible

outliers.

It is also possible to make SVMs find non-linear patterns efficiently using

the kernel trick. A function φ(x) that maps the feature space x into a high-

dimensional space is used. This high-dimensional space is a Hilbert space, and

the dot product φ(x) · φ(x′) can be represented as a kernel function K(x, x′). A

9In actual implementations, the parameter vector for one of the classes can be dropped
because it is redundant.
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popular kernel function is the radial basis function kernel (RBF):

K(x, x′) = exp

(
−||x− x

′||2

2σ2

)
(1.8)

in which σ (σ > 0) is a free parameter that has to be tuned for each specific

problem.

By using kernels, the hyperplane is calculated in the high-dimensional space

(ωT · φ(x) + b). The dual formulation of the SVM allows replacing every dot

product by a kernel function as is shown in the following expression:

max
α

N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyj ·K(xi, xj)

subject to 0 ≤ αi ≤ C, ∀i ∈ {1, . . . , N}
N∑
i=1

αiyi = 0

(1.9)

where the parameters αi, i ∈ {1, . . . , N} correspond to the Lagrange multipli-

ers of the constrained optimisation problem. A popular algorithm for solving

this quadratic programming problem is sequential minimal optimisation (Platt,

1998). In this thesis we use the implementation provided by the LIBSVM li-

brary (Chang and Lin, 2011). Once the parameters α have been determined, it

is possible to classify a new observation xj according to the following expres-

sion:

sign

(
N∑
i=1

αiyi ·K(xi, xj) + b

)
(1.10)

The calculation of the bias term b varies according to the the solver algo-

rithm (Platt, 1998). A convenient property of SVMs is that the values of α

will be different from zero only for a certain (usually small) number exam-

ples known as support vectors. Thus, SVMs only need to evaluate the kernel

function between xj and the support vectors.

SVMs can also be applied to multi-class problems, e.g., by using the one-vs-

the-rest strategy introduced in the previous section.
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1.3 Research Problem

We refer to message-level polarity classification as the task of automatically

classifying tweets into sentiment categories. This problem has been success-

fully tackled by representing tweets from a corpus of hand-annotated exam-

ples using feature vectors and training classification algorithms on them (Mo-

hammad, Kiritchenko and Zhu, 2013). A popular choice for building the fea-

ture space X is the vector space model (Salton, Wong and Yang, 1975), in

which all the different words or unigrams found in the corpus are mapped

into individual features. Word n-grams, which are consecutive sequences of

n words, can also been used analogously. Each tweet is represented as a

sparse vector whose active dimensions (dimensions that are different from

zero) correspond to the words or n-grams found in the message. The values of

each active dimension can be calculated using different weighting schemes,

such as binary weights or frequency-based weights with different normalisa-

tion schemes.

The message-level sentiment label space Y corresponds to the different sen-

timent categories that can be expressed in a tweet, e.g., positive, negative,

and neutral. Because sentiment is a subjective judgment, the ground-truth

sentiment category of a tweet must be determined by a human evaluator,

and hence, the manual annotation of tweets into sentiment classes is a time-

consuming and labour-intensive task. We refer to this problem as the label

sparsity problem. Because supervised machine learning models are imprac-

tical in the absence of labelled tweets, the label sparsity problem imposes

practical limitations on using these techniques for classifying the sentiment of

tweets.

Crowdsourcing tools such as Amazon Mechanical Turk10 or CrowdFlower11

allow clients to use human intelligence to perform tasks in exchange for a

monetary payment set by the client. They have been successfully used for

manually labelling tweets into sentiment classes (Nakov, Rosenthal, Kozareva,

Stoyanov, Ritter and Wilson, 2013). Nevertheless, a classifier trained from a

particular collection of manually annotated tweets will not necessarily perform

well on tweets about topics that were not included in the training data or

on tweets written in a different period of time. This is because the relation

between messages and the corresponding sentiment label can change from

one domain to another or over time. We refer to this problem as the sentiment

10https://www.mturk.com
11https://www.crowdflower.com
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drift problem.

Social media opinions are expressed in different domains such as politics,

products, movie reviews, sports, among others. More specifically, opinions

are expressed about particular topics, entities or subjects of a certain domain.

For example, “Barack Obama” is a specific entity of the domain “politics”.

The words and expressions that define the sentiment of a text passage are

referred to in the literature as opinion words (Liu, 2012). For instance, happy

is a positive opinion word and sad is a negative one. As has been studied

in (Engström, 2004; Read, 2005) many opinion words are domain-dependent.

That means that words or expressions that are considered as positive or neg-

ative for a certain domain will not necessarily have the same relevance or

orientation in a different context. This situation is clarified in the following

examples taken from real posts on Twitter:

1. For me the queue was pretty small and it was only a 20 minute wait I

think but was so worth it!!! :D @raynwise

2. Odd spatiality in Stuttgart. Hotel room is so small I can barely turn

around but surroundings are inhumanly vast & long under construction.

3. My girlfriend just called me to say good night because she accident (sic)

fell asleep without saying it earlier :) #ShesTooCute

4. I got some RAGE over this #Harambe accident. This is why there should

be NO zoos.

Here we can see that opinion words small and accident can be used to

express opposite sentiment in different contexts. This is a manifestation of

the sentiment drift problem, and its main consequence is that a sentiment

classifier that was trained on data of a particular domain may not necessarily

have the same classification performance for other topics or domains.

Temporal changes in the sentiment pattern are another manifestation of sen-

timent drift. The relation between messages and their corresponding senti-

ment label for a particular topic is non-stationary, i.e., it can change over time

(Durant and Smith, 2007; Bifet and Frank, 2010; Bifet, Holmes and Pfahringer,

2011; Silva, Gomide, Veloso, Meira and Ferreira, 2011; Calais Guerra, Veloso,

Meira Jr and Almeida, 2011; Guerra, Meira and Cardie, 2014). For instance,

when an unexpected event associated with the topic occurs suddenly (e.g.,

a scandal linked to a public figure), new expressions conveying sentiment

8
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can arise spontaneously, such as #trumpwall and #PrayForParis. Addition-

ally, other existing words or expressions can change their frequency affecting

the polarity pattern of the topic. Hence, the accuracy of a sentiment classifier

affected by this change would decrease over time.

This problem was empirically studied in (Durant and Smith, 2007) by train-

ing sentiment classifiers using training and testing data from different time

periods. The results indicated a significant decrease in the classification per-

formance as the time difference between the training and the testing data was

increased.

A possible approach to overcome the sentiment drift problem is to constantly

update the sentiment classifier with new labelled data (Silva et al., 2011).

However, as discussed in (Silva et al., 2011; Calais Guerra et al., 2011; Guerra

et al., 2014), the high volume and sparsity of social streams make the continu-

ous acquisition of sentiment labels, even using crowdsourcing tools, infeasible.

The label sparsity and sentiment drift problems are connected.

The research problem considered in this thesis is how to derive accurate

polarity classifiers for Twitter in label sparsity conditions without relying on

the costly process of human annotation.

1.4 Existing Solutions and their Limitations

Opinion lexicons are a well known type of resource for supporting sentiment

analysis of documents, especially when sentiment-annotated documents are

scarce. An opinion lexicon is a list of terms or opinion words annotated accord-

ing to sentiment categories such as positive and negative. Opinion lexicons

can be used as prior lexical knowledge for calculating the sentiment of doc-

uments and tweets in an unsupervised fashion (Hatzivassiloglou and Wiebe,

2000; Taboada, Brooke, Tofiloski, Voll and Stede, 2011; Thelwall, Buckley and

Paltoglou, 2012), and to extract low-dimensional message-level features, such

as the number of words in the message matching each sentiment category, for

training sentiment classifiers from small samples of annotated data (Bravo-

Marquez, Mendoza and Poblete, 2014; Kouloumpis, Wilson and Moore, 2011;

Mohammad et al., 2013; Jiang, Yu, Zhou, Liu and Zhao, 2011).

Opinion lexicons, however, suffer from similar shortcomings as supervised

models for classifying the sentiment of tweets. The ground-truth sentiment of

a word is a subjective judgment determined by a human, and the diversity of

informal expressions found in Twitter makes the manually annotation of opin-

ion words also an expensive and time-consuming task. Furthermore, opinion

9
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lexicons are not immune to the sentiment drift phenomenon. Some word polar-

ities can be inaccurate for certain domains, and they can also become obsolete

due to temporal changes in the sentiment pattern.

An appealing strategy to address both the label sparsity and sentiment drift

problems for message-level polarity classification in Twitter is distant super-

vision. Distant supervision models are heuristic labelling functions (Mintz,

Bills, Snow and Jurafsky, 2009) used for automatically creating training data

from unlabelled corpora. These models have been widely adopted for Twitter

sentiment analysis because large amounts of unlabelled tweets can be easily

obtained through the use of the Twitter API.

Theoretically speaking, distant supervision is a direct solution to the label

sparsity problem as it replaces the human annotation labour. It can also po-

tentially solve the sentiment drift problem because existing classifiers can be

updated with more recently labelled examples or with tweets annotated from

the domain in which a drift is being observed.

A well-known distant supervision approach for Twitter polarity classifica-

tion is the emoticon-annotation approach, in which tweets with positive :) or

negative :( emoticons are labelled according to the polarity indicated by the

emoticon after removing the emoticon from the content (Read, 2005). This

method is affected by the following limitations:

1. The removal of all tweets without emoticons may cause a loss of valuable

information.

2. Emoticons are likely to produce misleading labels such as in the following

example: “you’re not dating me? sad... tragic... for you at least :)”,

3. There are many domains such as politics, in which emoticons are not

frequently used to express positive and negative opinions, and hence, it

is very difficult to obtain emoticon-annotated data from these domains.

As we can see, existing methods based on opinion lexicons and distant su-

pervision exhibit major drawbacks when used for classifying the sentiment of

tweets in label sparsity conditions.

1.5 Research Proposal

This thesis addresses the label sparsity problem for Twitter polarity classifica-

tion by acquiring and exploiting lexical knowledge. The research hypothesis

is as follows:
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“Polarity classification of tweets when training data is sparse can be

successfully tackled through Twitter-specific polarity lexicons and lexicon-

based distant supervision.”

The problem of acquiring lexical knowledge in the form of opinion lexicons

is referred to as polarity lexicon induction. We propose two Twitter-specific

polarity lexicon induction methods based on word-level classification: 1) word-

sentiment associations and 2) the tweet centroid model. We also propose two

distant supervision methods that exploit existing opinion lexicons for building

synthetically labelled data on which message-level polarity classifiers can be

trained: 1) partitioned tweet centroids and 2) annotate-sample-average (ASA).

We now briefly review these methods.

1.5.1 Word-sentiment Associations

This method combines information from automatically annotated tweets and

existing hand-made opinion lexicons to induce a Twitter-specific opinion lexi-

con in a supervised fashion. The induced lexicon contains part-of-speech (POS)

disambiguated entries (e.g., noun, verb, adjective) with a probability distribu-

tion for positive, negative, and neutral polarity classes.

To obtain this distribution using machine learning, word-level attributes are

used based on (a) the morphological information conveyed by POS tags and (b)

associations between words and the sentiment expressed in the tweets that

contain them. The sentiment associations are modelled in two different ways:

using point-wise-mutual-information semantic orientation (PMI-SO) (Turney,

2002), which is based on the point-wise mutual information between a word

and tweet-level polarity classes, and using stochastic gradient descent seman-

tic orientation (SGD-SO), which learns a linear relationship between words

and sentiment.

The message-level sentiment labels are obtained automatically using emoti-

cons and a transfer learning approach. The transfer learning approach en-

ables learning of opinion words from tweets without emoticons by deploying

a message-level classifier trained from tweets annotated with emoticons on a

target collection of unlabelled tweets.

The training words are labelled by a seed lexicon formed by combining mul-

tiple hand-annotated lexicons, and the induced lexicon is obtained after de-

ploying the trained word-level classifier on the remaining unlabelled words
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from the corpus of tweets.

The experimental results show that the method outperforms the word-level

polarity classification performance obtained by using PMI-SO alone. This

is significant because PMI-SO is a state-of-the-art measure for establishing

world-level sentiment.

1.5.2 Tweet Centroid Model for Lexicon Induction

The tweet centroid model is another word-level classification model for po-

larity lexicon induction, which in contrast to the previous method, does not

necessarily depend on labelled tweets and can perform lexicon induction di-

rectly from a given corpus of unlabelled tweets.

The distributional hypothesis (Harris, 1954) states that words occurring in

similar contexts have similar meanings. Distributional semantic models (Tur-

ney and Pantel, 2010) are used for representing lexical items such as words

according to the context in which they occur. The tweet centroid model is a

distributional representation that exploits the short nature of tweets by treat-

ing them as the whole contexts of words. In the tweet centroid model, tweets

are represented by sparse vectors using standard natural language process-

ing (NLP) features, such as unigrams and low-dimensional word-clusters, and

words are represented as the centroids of the tweet vectors in which they

appear.

The lexicon induction is conducted by training a word-level classifier using

these centroids to form the instance space and a seed lexicon to label the train-

ing instances. The trained classifier is deployed on the remaining unlabelled

words in the same way as in the previous model.

Experimental results show lexicons generated with the tweet centroid model

produce valuable features for classifying the sentiment of tweets when com-

pared with the original seed lexicon.

The model is also used to produce a more fine-grained word-level categori-

sation based on emotion categories, e.g., anger, fear, surprise, and joy. This is

done by employing labels provided by an emotion-associated lexicon (Moham-

mad and Turney, 2013) and multi-label classification techniques.

The tweet centroid model allows message-level classifiers trained from sentiment-

annotated tweets to be deployed on words for polarity lexicon induction be-

cause both tweets and words are represented by feature vectors of the same

dimensionality and can also be labelled according to the same sentiment cate-

gories, e.g, positive and negative. This is useful in scenarios where no labelled
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words are available for training a word-level classifier, but labelled tweets can

be obtained instead.

1.5.3 Partitioned Tweet Centroids for Distant Superivison

Lexicon-based distant supervision methods automatically create message-level

training data from unlabelled tweets by exploiting the prior sentiment knowl-

edge provided by opinion lexicons. As lexicons are usually formed by more

than a thousand words, lexicon-based methods can potentially exploit more

data than a small number of positive and negative emoticons.

The tweet centroid model can also be used as a lexicon-based distant su-

pervision method. As tweets and words are represented by the same feature

vectors, a word-level classifier trained from a polarity lexicon and a corpus of

unlabelled tweets can be used for classifying the sentiment of tweets repre-

sented by sparse feature vectors. In other words, the labelled word vectors

correspond to lexicon-annotated training data for message-level polarity clas-

sification.

A drawback of this simple idea is that the number of labelled words for train-

ing the word-level classifier is limited to the number of words in the lexicon.

In some scenarios, it is desirable to be able to create training datasets that

increase in size when increasing the size of the source corpus of unlabelled

tweets. This is because many classifiers perform better when trained from

large datasets (Witten et al., 2011). We propose a simple modification to the

tweet centroid model for increasing the number of labelled instances, yielding

“partitioned tweet centroids". This modification is based on partitioning the

tweets associated with each word into smaller disjoint subsets of a fixed size.

The method calculates one centroid per partition, which is labelled according

to the lexicon. The experimental results show that partitioned tweet centroids

outperform the emoticon-annotation approach for message-level polarity clas-

sification.

1.5.4 Annotate-Sample-Average

Annotate-Sample-Average (ASA) is another lexicon-based distant supervision

method for training polarity classifiers in Twitter in the absence of labelled

data. ASA takes a collection of unlabelled tweets and a polarity lexicon com-

posed of positive and negative words and creates synthetic labelled instances

for message-level polarity classification. Each labelled instance is created by
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sampling with replacement a number of tweets containing at least one word

from the lexicon with the desired polarity, and averaging the feature vectors

of the sampled tweets.

The rationale of the method is based on the hypothesis that a tweet contain-

ing an opinion word with a known polarity is more likely to express the same

polarity than the opposite one. Consequently, averaging multiple tweets con-

taining words with the same polarity increases the confidence of obtaining a

vector located in the region of the target polarity.

This hypothesis is empirically validated, and the experimental results show

that the training data generated by ASA (after tuning its parameters) produces

a message-level classifier that performs significantly better than a classifier

trained from tweets annotated with emoticons and a classifier trained, without

any sampling and averaging, from tweets annotated according to the polarity

of their words.

1.6 Publications

During the course of this project, the following peer-reviewed papers have

been published in journals and conference proceedings:

1. F. Bravo-Marquez, E. Frank, and B. Pfahringer Positive, Negative, or Neu-

tral: Learning an Expanded Opinion Lexicon from Emoticon-annotated

Tweets, In IJCAI ’15: Proceedings of the 24th International Joint Confer-

ence on Artificial Intelligence. Buenos Aires, Argentina 2015.

2. F. Bravo-Marquez, E. Frank, and B. Pfahringer From Unlabelled Tweets

to Twitter-specific Opinion Words, In SIGIR ’15: Proceedings of the 38th

International ACM SIGIR Conference on Research & Development in In-

formation Retrieval. Santiago, Chile 2015.

3. F. Bravo-Marquez, E. Frank, and B. Pfahringer Building a Twitter Opin-

ion Lexicon from Automatically-annotated Tweets, In Knowledge-Based

Systems. Volume 108, 15 September 2016, Pages 65 -– 78.

4. F. Bravo-Marquez, E. Frank, and B. Pfahringer Annotate-Sample-Average

(ASA): A New Distant Supervision Approach for Twitter Sentiment Anal-

ysis, In ECAI’16: Proceedings of the biennial European Conference on

Artificial Intelligence. The Hague, Netherlands 2016.
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5. F. Bravo-Marquez, E. Frank, and B. Pfahringer From opinion lexicons to

sentiment classification of tweets and vice versa: a transfer learning ap-

proach, In WI’16: Proceedings of the IEEE/WIC/ACM International Con-

ference on Web Intelligence. Omaha, Nebraska, USA 2016.

6. F. Bravo-Marquez, E. Frank, S. Mohammad, and B. Pfahringer Determin-

ing Word–Emotion Associations from Tweets by Multi-Label Classifica-

tion, In WI’16: Proceedings of the IEEE/WIC/ACM International Confer-

ence on Web Intelligence. Omaha, Nebraska, USA 2016.

1.7 Experimental Methodology

The methods proposed in this thesis are evaluated empirically on collections

of manually-annotated data. We use hand-annotated lexicons as ground truth

for the polarity lexicon induction methods and tweets that were manually an-

notated into sentiment classes for evaluating the distant supervision methods.

All these datasets are described in Chapter 2.

When evaluating a machine learning classifier, it is not recommended to

carry out the evaluation on the same data on which the classifier was trained.

The performance obtained on the training data is likely to be biased and mis-

leadingly optimistic, because some classifiers are prone to learn random noise.

This phenomenon is known as over-fitting, and is commonly addressed by eval-

uating classifiers on independent testing examples that were not included for

training.

In the “hold-out” approach, the training dataset is split into two independent

training and testing datasets. The classifier is trained over the training set and

then used to classify the values of the testing set. The predicted outputs are

compared with their corresponding gold standard values.

A drawback of the “hold-out” approach is that all the examples within the

testing set are not used for training purposes. As it has been discussed before,

the labelled observations are often expensive to obtain, and hence it would be

better to use all the available training examples. The k-fold cross-validation

approach tackles this problem by randomly partitioning the training data into

k folds of the same size, which are all stratified to maintain the same class dis-

tribution as the original dataset. Then, for each fold k, a classifier is trained

over the remaining k − 1 folds and evaluated over the retained one. The eval-

uation measures are averaged for all the folds ensuring that all observations

are used for both training and evaluation purposes. Cross-validation gives a
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more robust estimation of the classifier’s performance on unseen data than the

“hold-out” approach, and allows estimating the standard deviation of the per-

formance across the folds. Additionally, the cross-validation procedure can be

repeated multiple times using different random partitions of the folds (varying

the random seed number), in order to get a better estimation of the classifier’s

performance.

Cross-validation can be used for statistically comparing the performance of

two different classifiers on the same data. The average performance scores

produced by two classifiers for all k folds, or n× k if the process is repeated n

times, can be compared using statistical tests such as the paired t -student test.

The null hypothesis is that there is no difference in the average performance of

two classification schemes. In this thesis, we compare different word-level and

message-level sentiment classification schemes with cross-validation using the

corrected resampled paired t -student test with an α level of 0.05 (Nadeau and

Bengio, 2003). This statistical test is a variant of the paired t -student test that

corrects the problems that arise when different performance estimations are

calculated from overlapping samples.

Cross-validation is not suitable for evaluating distant supervision schemes.

This is because the automatically-labelled examples, such as tweets with emoti-

cons, correspond to a biased sample of the real tweets (Go, Bhayani and

Huang, 2009). We calculate the average performance of distant supervision

classifiers deployed on an independent target collection of manually-annotated

examples by varying the collection of unlabelled tweets from which the la-

belled training data is generated. The performance of two distant supervision

methods estimated in this way is compared using the non-parametric paired

Wilcoxon signed-rank test with the significance value set to 0.05.

1.7.1 Evaluation Measures

Next, we introduce the performance metrics used for evaluating classifiers.

Considering a binary classifier f deployed on a testing dataset, four possible

outcomes can be calculated: 1) correctly classified positive observations or

True Positives (TP), 2) correctly classified negative observations or True Neg-

atives (TN), 3) negative observations wrongly classified as positive or False

Positives (FP), and 4) positive observations wrongly classified as negative or

False Negatives (FN). These outputs are normally displayed in a confusion

matrix C such as Table 1.1.

For multi-class problems, the confusion matrix is generalised to an L×L ma-
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y = +1 y = −1
f(x) = +1 TP FP
f(x) = −1 FN TN

Table 1.1: Classification confusion matrix.

trix C where L is the number of classes and N is the total number of examples

in the dataset. A cell Cij corresponds to the number of examples for which

the classifier predicts class i and the real class is j. Note that all correctly

classified examples lie on the diagonal of the matrix, and that the sum of all

the elements of the matrix is equal to the total number of examples (N):

N =
L∑
i=1

L∑
j=1

Cij (1.11)

The evaluation measures are described below:

• Accuracy, the overall percentage of correctly classified observations. For

binary classification problems, it is calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
. (1.12)

and it is generalised to multi-class problems according to the following

expression:

Accuracy =

∑L
i=1Cii
N

(1.13)

• Kappa statistic: In classification problems in which the class distribution

is highly skewed towards a majority class, a classifier can yield a high

accuracy by chance. The kappa statistic κ (Cohen, 1960) corrects this

problem by normalising the classification accuracy according to the im-

balance of the classes in the data. A classifier that is always correct will

have a κ of one. Conversely, if it makes the right predictions with the

same probability as a random classifier, the value of κ will be zero. It is

calculated as follows:

κ =
Accuracy− pc

1− pc
(1.14)

where pc corresponds to the following expression:
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pc =
L∑
i=1

(
L∑
j=1

Cij
N
·

L∑
j=1

Cji
N

)
(1.15)

• Precision, the fraction of correctly classified positive observations over

all the observations classified as positive:

Precision =
TP

TP + FP
. (1.16)

In multi-class problems, multiple precisions are calculated using a one-

vs-the-rest strategy and averaged. It is common to weight the scores

according to the relative frequency of their corresponding classes. This

approach applies for all the remaining measures in multi-class scenarios.

• Recall (also called sensitivity and true positive rate), the fraction of cor-

rectly classified positive observations over all the positive observations:

Recall =
TP

TP + FN
. (1.17)

• F1-score, the harmonic mean between the precision and recall:

F1-score = 2 · Precision · Recall

Precision + Recall
. (1.18)

• Area Under the Curve (AUC): The receiver operating characteristic (ROC)

curve or ROC curve plots the true positive rate (TPR), which is equivalent

to recall, against the false positive rate (FPR), which is calculated as fol-

lows:

FPR =
FP

FP + TN
. (1.19)

The multiple values of TPR and FPR required for building an ROC curve

are obtained using different threshold settings for a same classifier. For

example, in a logistic regression model, different decision thresholds for

the posterior probability are considered. The area under the ROC curve

(AUC) is a useful metric because it is independent of any specific value

for the decision threshold. This area is 1 for a perfect classifier and 0.5

for a random one.
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1.8 Thesis Outline

1.8 Thesis Outline

This thesis is structured as follows. A review of the literature on sentiment

analysis and social media is presented in Chapter 2. The word-sentiment as-

sociation method for polarity lexicon induction is described and evaluated in

Chapter 3. Chapter 4 describes the tweet centroid model for polarity lexicon

induction and for determining word-emotion associations. In Chapter 5, the

tweet centroid model is used for transferring sentiment knowledge between

words and tweets. The partitioned version of the model for distant supervision

is also described in that chapter. The annotate-sample-average distant super-

vision method is described and evaluated in Chapter 6. Chapter 7 presents

the main findings and contributions of this thesis, as well as a perspective for

future work.
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Chapter 2

Sentiment Analysis and Social Media

In the early stages of the Web, its content was usually published by website

owners associated with traditional information sources such as news media

and companies, among other organisations. Additionally, the content was

mainly about “facts” which are objective statements on particular entities or

topics. In the 2000s, the rise of Web 2.0 platforms (O’Reilly, 2007), e.g., blogs,

online social networks and microblogging services, changed this situation by

allowing users to generate and share textual content in a simpler way. This

situation caused an explosive growth of subjective information (i.e., personal

opinions) available on the Web, which in turn provided new opportunities for

information system developers. As the factual information has been tradi-

tionally processed using techniques such as information retrieval and topic

classification, different types of methods are required in order to process the

“subjective" content generated by users. In this chapter, we give a review of

those methods, which are commonly referred to in the research literature as

opinion mining and sentiment analysis techniques. We discuss works address-

ing sentiment classification of documents, sentences, and tweets, as well as

methods for polarity lexicon induction. Popular existing opinion lexicons are

also reviewed and analysed. Moreover, we discuss work conducting aggre-

gated analysis of opinions and applications of sentiment analysis and social

media mining, including predictions about stock market prices and election

outcomes. Finally, we provide a discussion of existing developments in the

field in the context of the research problem addressed in this thesis.

2.1 Primary Definitions

Let d be an opinionated document (e.g., a product review) composed of a list

of sentences s1, . . . , sn. As stated in (Liu, 2009), the basic components of an

opinion expressed in d are:
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• Entity: can be a product, person, event, organisation, or topic on which

an opinion is expressed (opinion target). An entity is composed of a hi-

erarchy of components and sub-components where each component can

have a set of attributes. For example, a cell phone is composed of a

screen, a battery among other components, the attributes of which could

be the size and the weight. For simplicity, components and attributes are

both referred to as aspects.

• Opinion holder: the person or organisation that holds a specific opinion

on a particular entity. While in reviews or blog posts the holders are

usually the authors of the documents, in news articles the holders are

commonly indicated explicitly (Bethard, Yu, Thornton, Hatzivassiloglou

and Jurafsky, 2004).

• Opinion: a view, attitude, or appraisal of an object from an opinion holder.

An opinion can have a positive, negative or neutral orientation, where the

neutral orientation is commonly interpreted as no opinion. The orienta-

tion is also named sentiment orientation, semantic orientation (Turney,

2002), or polarity.

Considering the components of the opinions presented above, an opinion is

defined as a quintuple (ei, aij, ooijkl, hk, tl) (Liu, 2010). Here, ei is an entity, aij

is an aspect of ei and ooijkl is the opinion orientation of aij expressed by the

holder hk during time period tl. Possible values for ooijkl are the categories

positive, negative and neutral or different strength/intensity levels. In cases

when the opinion refers to the whole entity, aij takes a special value named

GENERAL.

It is important to consider that within an opinionated document, several

opinions about different entities and also different holders can be found. In

this context, a more general opinion mining problem can be addressed consist-

ing of discovering all opinion quintuples (ei, aij, ooijkl, hk, tl) from a collection

D of opinionated documents. These approaches are referred to as aspect-

based or feature-based opinion mining methods (Liu, 2009). As we can see,

working with opinionated documents involves tasks such as identifying enti-

ties, extracting aspects from the entities, the identification of opinion holders

(Bethard et al., 2004), and the sentiment evaluation of the opinions (Pang and

Lee, 2008).

In addition to the orientation or polarity, there are other affective dimensions

by which opinions can be evaluated like subjectivity and emotion.
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A sentence of a document is defined as subjective when it expresses personal

feelings, views or beliefs. It is common to treat neutral sentences as objective

and opinionated sentences as subjective.

Emotions are subjective feelings and thoughts. According to (Parrot, 2001)

people have six primary emotions, which are: love, joy, surprise, anger, sad-

ness, and fear. Another categorisation, proposed by Ekman (1992), is formed

by 6 basic emotions: anger, fear, joy, sadness, surprise, and disgust, which was

latter extended by Plutchik (2001) to include two additional emotion states:

anticipation and trust.

The affective dimension of a document can be represented using different

variable types. Nominal variables are used to represent hard associations

with the affective dimension e.g., positive or non-positive, while ordinal and

numeric variables are used to represent intensity or strength levels, such as

weakly positive, strongly positive, or 40% negative.

2.2 Sentiment Classification of Documents,
Sentences, and Tweets

The most popular task in sentiment analysis is document sentiment classi-

fication, which generalises the message-level polarity classification problem

presented in Chapter 1 to documents of any length. A common assumption for

simplifying the problem is that the target document expresses opinions about

one single entity from one opinion holder (Liu, 2009). When sentiment clas-

sification is applied to a single sentence instead of to a whole document, the

task is named sentence-level sentiment classification (Wilson, Wiebe and Hoff-

mann, 2005). In this section we review five approaches to sentiment classifi-

cation: 1) supervised approaches, 2) lexicon-based approaches, 3) subjectivity

detection, 4) multi-domain sentiment classification, and 5) sentiment classifi-

cation of tweets.

2.2.1 Supervised Approaches

A popular approach is to model the problem as a supervised learning problem.

The idea behind this approach is to train a function capable of determining

the sentiment orientation of an unseen document using a corpus of documents

labelled by sentiment. For example, the training and testing data can be ob-

tained from websites of product reviews where each review is composed of a

free text comment and a reviewer-assigned rating. A list of available training
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corpora from opinion reviews can be found in (Pang and Lee, 2008). After-

wards, the text data and the ratings are transformed into a feature-vector and

a target value respectively. For example, if the rating is on a 1-5 star scale,

high-starred reviews can be labelled as positive opinions and low-starred re-

views as negative in the same way. The problem can also be formulated as an

ordinal regression problem using the number of stars as the target variable

(Pang and Lee, 2005). In (Pang, Lee and Vaithyanathan, 2002), the authors

trained a binary classifier (positive/negative) over movie reviews from the In-

ternet Movie Database (IMDb). They used the following features: unigrams,

bigrams, and part of speech tags, and the following learning algorithms: Sup-

port Vector Machines (SVM), Maximum Entropy Classifier, and Naive Bayes.

The best average classification accuracy obtained through a three-fold cross-

validation was 82.9%. This result was achieved using purely unigrams as fea-

tures and an SVM as learning algorithm.

More recent models have adopted the “representation learning” approach

of learning the document representation directly from the data using neu-

ral networks (Collobert and Weston, 2008). Word embeddings are a popular

choice among those approaches. They are low-dimensional continuous dense

word vectors trained from unlabelled document corpora capable of capturing

rich semantic information. A state-of-the-art word embedding model is the

skip-gram model (Mikolov, Sutskever, Chen, Corrado and Dean, 2013) imple-

mented in the Word2vec1 library. In this method, a neural network with one

hidden layer is trained for predicting the words surrounding a centre word,

within a window of size k that is shifted along the input corpus. The centre

and surrounding k words correspond to the input and output layers of the net-

work, respectively, and are represented by 1-hot vectors, which are vectors of

the size of the vocabulary (|V |) with zero values in all entries except for the

corresponding word index that receives a value of 1. Note that the output

layer is formed by the concatenation of the k 1-hot vectors of the surrounding

words. The hidden layer has a dimensionality l, which determines the size of

the embeddings (normally l � |V |). The word-embedding for each word can

be obtained in two ways: 1) from the projection matrix connecting the input

layer with the hidden one, and 2) from the projection matrix connecting the

hidden layer with the output one. The network is efficiently trained using an

algorithm called “negative-sampling”, and the rationale of the model is that

words occurring in similar contexts will receive similar vectors. There is an-

1https://code.google.com/p/word2vec/

24

https://code.google.com/p/word2vec/


2.2 Sentiment Classification of Documents, Sentences, and Tweets

other word embedding model called continuous bag of words (CBOW), which

is analogous to the skip-gram model after swapping its input and output lay-

ers. Thus, the learning task of CBOW consist of predicting a centre word given

its surrounding words in a window.

A simple approach for using word-embeddings in sentence-level polarity

classification is to use the average word vector as the feature representation of

a sentence, which is latter used as input for training a sentence-level polarity

classifier (Castellucci, Croce and Basili, 2015).

There are syntactic dependencies such as negations and but clauses known

as “opinion shifters” (Liu, 2009) that can strongly alter the overall polarity of

a sentence, e.g., “I didn’t like the movie”, “I like you but I’m married”. Repre-

sentations based on unigrams or averaging word embeddings lack information

about the sentence structure. Hence, they are unable to capture long-distance

dependencies in the passage. In the following, we discuss two representation

learning techniques for modelling semantic compositionality in sentences that

were successfully employed for sentiment analysis.

A recursive neural tensor network for learning the sentiment of pieces of

texts of different granularities, such as words, phrases, and sentences, was

proposed in (Socher, Perelygin, Wu, Chuang, Manning, Ng and Potts, 2013).

The network was trained on a sentiment annotated treebank2 of parsed sen-

tences for learning compositional vectors of words and phrases. Every node

in the parse tree receives a vector, and there is a matrix capturing how the

meaning of adjacent nodes changes. The main drawback of this model is that it

relies on parsing. Thus, it would be difficult to apply it to Twitter data because

of the lack of Twitter-specific sentiment treebanks and robust constituency

parsers for Twitter (Foster, Cetinoglu, Wagner, Le Roux, Nivre, Hogan and van

Genabith, 2011).

A paragraph vector-embedding model that learns vectors for sequences of

words of arbitrary length (e.g, sentences, paragraphs, or documents) without

relying on parsing was proposed in (Le and Mikolov, 2014). The paragraph

vectors are obtained by training a similar network as the one used for training

the CBOW embeddings. The words surrounding a centre word in a window

are used as input together with a paragraph-level vector for predict the centre

word. The paragraph-vector acts as a memory token that is used for all the

centre words in the paragraph during the training the phase.

The recursive neural tensor network and the paragraph-vector embedding

2http://nlp.stanford.edu/sentiment/treebank.html
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were evaluated on the same movie review dataset used in (Pang et al., 2002),

obtaining an accuracy of 85.4% and 87.8%, respectively. Both models outper-

formed the results obtained by classifiers trained on representations based on

bag-of-words features.

Most sentiment analysis datasets are imbalanced in favour of positive ex-

amples (Li, Wang, Zhou and Lee, 2011). This is presumably because users

are more likely to report positive than negative opinions. The shortcoming of

training sentiment classifiers from imbalanced datasets is that many classifica-

tion algorithms tend to predict test samples as the majority class (Japkowicz

and Stephen, 2002) when trained from this type of data. A semi-supervised

model for imbalanced sentiment classification is proposed in (Li et al., 2011).

The model exploits both labelled and unlabelled documents by iteratively per-

forming under-sampling of the majority class in a co-training framework using

random subspaces of features.

2.2.2 Lexicon-based Approaches

In scenarios where training data is scarce, supervised models become imprac-

tical. Here we review models that exploit existing lexical knowledge about the

sentiment of words for classifying the sentiment of documents.

We identify two types of lexicon-based approaches: 1) unsupervised models

that do not require a training corpus of labelled documents, and 2) mixed

models that combine lexical knowledge with labelled documents.

A common way of computing the polarity of a document relying only on

lexicon knowledge is to aggregate the orientation values of the known opinion

words found in the document (Hatzivassiloglou and Wiebe, 2000). A simple

approach is to calculate the difference between positive and negative words,

and label the document according to the difference’s sign. More sophisticated

aggregation functions including rules for negations and opinion shifters have

also been proposed (Taboada et al., 2011; Thelwall et al., 2012).

A well-known model that uses the orientation of two opinion words and co-

occurrence statistics obtained from a search engine is proposed in (Turney,

2002). First of all, a part-of-speech (POS) tagging is applied to all words of

the document. POS tagging automatically identifies the linguistic category to

which a word belongs within a sentence. Common POS categories are: noun,

verb, adjective, adverb, pronoun, preposition, conjunction and interjection.

The hypothesis of this work is that phrases containing a sequence of an ad-

jective or an adverb as adjective followed by an adverb probably express an
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opinion. Therefore, all sentences with a sequence of words that satisfy the pat-

tern described above are extracted. The sentiment of each selected phrase is

calculated using the point-wise mutual information (PMI) (Church and Hanks,

1990), which gives a measure of statistical independence between two words:

PMI(term1, term2) = log2

(
Pr(term1 ∧ term2)

Pr(term1)Pr(term2)

)
. (2.1)

In order to compute the semantic orientation, the PMI value of each phrase

is calculated against a positive and a negative opinion word: “poor” and “ex-

cellent”. Then, as shown in Equation 2.2, the first value is subtracted from the

second one to form the PMI-SO score.

PMI-SO(phrase) = PMI(phrase, “excellent”)− PMI(phrase, “poor”). (2.2)

The probabilities of the PMI values are estimated using frequency counts,

which are calculated as the number of hits returned by a search engine in

response to a query composed of the sentence and the word “excellent” and

another query using the word “poor” in the same way. Finally, the PMI-SO of a

document is calculated as the average PMI-SO of the phrases within it. If this

value is positive, the sentiment orientation of the document is labelled with

the tag “positive”, otherwise it is labelled with a “negative” tag. The method

exhibits high variability in performance when applied to different domains:

it achieved an accuracy of 84% for auto-mobile reviews and 66% for movie

reviews.

Next, we describe hybrid models that use both sentiment-annotated docu-

ments and opinion words for classifying the sentiment of documents.

The simplest approach is to use the opinion words for calculating aggregated

features in supervised classification schemes, such as the number of positive

and negative words found in a passage (Jiang et al., 2011; Kouloumpis et al.,

2011; Zirn, Niepert, Stuckenschmidt and Strube, 2011). Lexicon-based fea-

tures exhibit good generalisation properties as they include information about

words that do not necessarily occur in the training data.

In (Sindhwani and Melville, 2008), words and documents are jointly repre-

sented by a bipartite graph of labelled and unlabelled nodes. The sentiment

labels of words and documents are propagated to the unlabelled nodes us-

ing regularised least squares. In (Li, Zhang and Sindhwani, 2009), the term-

document matrix associated with a corpus of documents is factorised into
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three matrices specifying cluster labels for words and documents using a con-

strained non-negative tri-factorisation technique. Sentiment-annotated words

and documents are introduced into the model as optimisation constraints. A

generative naive Bayes model based on a polarity lexicon, which is then re-

fined using sentiment-annotated documents, is proposed in (Melville, Gryc and

Lawrence, 2009).

2.2.3 Subjectivity Detection

As has been seen above, sentiment classification usually assumes that docu-

ments are opinionated. However, in many cases a document within a collec-

tion contains only factual information, e.g., a news article. Furthermore, an

opinionated document may contain several non-opinionated sentences. Hence,

identifying the subjective sentences in a document is a relevant task that can

be carried out before the sentiment classification.

The problem of determining whether a sentence is subjective or neutral is

called subjectivity classification (Wiebe and Riloff, 2005). This problem can

also be formulated as a supervised learning problem. In (Wiebe, Bruce and

O’Hara, 1999) and (Yu and Hatzivassiloglou, 2003) a subjectivity classifier was

trained using Naive Bayes where an accuracy of 97% was achieved on a corpus

of journal articles. However, in the context of tweets, subjectivity detection

has shown to be a harder problem than polarity classification (Bravo-Marquez

et al., 2014).

Alternatively, the detection of subjectivity and polarity can be jointly ad-

dressed by treating the problem as a 3-class classification problem with classes:

neutral, positive, and negative.

According to (Koppel and Schler, 2006), neutral data is crucial for training

accurate polarity classifiers because, on the one hand, learning from only pos-

itive and negative documents will not generalise well to neutral examples, and

on the other hand, neutral training data allows for a better classification of

positive and negative documents.

2.2.4 Multi-Domain Sentiment Classification

The relationship between text and sentiment, as enunciated in Chapter 1, can

vary from one domain to another. One of the first works studying this phe-

nomenon was the thesis of Engström (2004). In that work, multiple sentiment

classifiers were trained and tested on data from different domains (e.g., movie
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reviews, automobiles). Results showed that classifiers trained on certain do-

mains were unlikely to perform as well when tested on different domains.

A possible approach to tackle this problem is to include labelled data from

all the domains to which the model will be applied in the training dataset. The

problem of this approach is that the data distribution may vary from one do-

main to another, and hence, it is very difficult to design a robust multi-domain

classifier (Glorot, Bordes and Bengio, 2011). Another simple solution is to train

domain-specific classifiers for each domain. However, we know from the dis-

cussion of the label sparsity problem that obtaining labelled data from several

domains is a costly process. Additionally, the sentiment patterns of different

domains are not equally closely related to each other. For example, book and

movie reviews are more related to each other than restaurant reviews. Hence,

the naive approach of training individual classifiers for each domain may be

inefficient because the knowledge provided by labelled instanced from similar

domains is not exploited.

According to (Read, 2005), emoticons are, unlike opinion words, poten-

tially domain-independent sentiment indicators. Thus, they could address the

domain-dependency problem when used to label training data for supervised

learning.

In (Wu and Huang, 2015), the multi-domain sentiment classification prob-

lem is addressed by jointly training a global sentiment model with multiple

domain-specific ones, in which each model corresponds to a linear classifier.

A convex loss function is optimised that considers different sources of infor-

mation: 1) labelled documents from all target domains, 2) a global sentiment

lexicon, 3) domain-specific sentiment lexicons for each domain, and 4) inter-

domain similarities. The domain-specific lexicons are calculated from labelled

examples of each domain using PMI semantic orientation and expanded to

words occurring in domain-specific unlabelled data. The expansion is done by

propagating the existing labels using a graph of associations between words.

The inter-domain similarities are calculated in two ways: 1) using unigram-

based textual similarities, and 2) by relying on the cosine similarity between

domain-specific lexicons. The loss function is regularised using a combination

of L1 and L2 norms and optimised using an accelerated algorithm. The novelty

of this approach is that it explicitly exploits the fact that some domains share

more sentiment information with others. The experimental results show that

the proposed model outperforms the multi-domain sentiment classification ac-

curacy of several existing multi-domain approaches.
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A number of methods have been proposed to adapt sentiment classifiers

from a source to a target domain. This strategy is suitable when the avail-

ability of labelled data is much higher in the source domain than in the target

domain. In this direction, four model-transfer approaches were compared in

(Aue and Gamon, 2005). The dataset consisted of a mixture of four differ-

ent domains: movie reviews, book reviews, product support services web sur-

vey data, and knowledge base web survey data. The first three approaches

apply SVMs classifiers with the following features: unigrams, bigrams, and

trigrams. In the first approach, which is used as the baseline method, one

single classifier is trained from all the domains. The second one follows a sim-

ilar idea as the former, but the features are limited to the ones observed in

the target domain. The third approach uses ensembles of classifiers from the

domains with available labelled data. Finally, the fourth approach combines

small amounts of labelled data with large amounts of unlabelled data in the

target domain following an expectation maximisation (EM) learning strategy

based on naive Bayes. Experiments were carried out using different numbers

of labelled examples across the different domains, and results showed that the

EM approach tends to achieve better accuracy than the others. The authors

argue that this occurred because the EM method is the only one that takes

advantage of unlabelled examples in the target domain.

Glorot et. al also exploited unlabelled data for domain adaptation in (Glorot

et al., 2011), using a deep learning procedure. High-level representations are

learnt in an unsupervised fashion from unlabelled data provided from multiple

domains. This is carried out using Stacked Denoising Auto-Encoders with a

sparse rectifier unit (Vincent, Larochelle, Bengio and Manzagol, 2008). Then,

a linear SVM is trained on the transformed labelled data of the source domain

and used to classify the testing data from the target domain. The hypothe-

sis of the approach is that higher-level features are intermediate abstractions

which are shared across different domains. Experimental results show that

this approach can successfully perform domain adaptation on a dataset of 22

domains.

A different, but somewhat related problem is to simultaneously extract top-

ics and opinions from a corpus of opinionated data on multiple topics. Proba-

bilistic generative models were proposed in (Mei, Ling, Wondra, Su and Zhai,

2007) and (Lin and He, 2009) to model the generative process of words re-

garding both topics and sentiment polarities. These models extend the topic

modelling approach (Blei, Ng and Jordan, 2003), in which it is assumed that
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words in a corpus of documents are generated by a mixture of topics. The ex-

tension is based on the assumption that words within topics are also generated

by a sentiment model that defines the polarity of the word.

The model proposed in (Mei et al., 2007), called the topic-sentiment mixture

model (TSM), relies on a mixture of four multinomial distributions to describe

the stochastic process in which words are generated from a corpus of opinion-

ated documents about multiple topics. The distributions and the generative

process are described as follows:

1. The background topic model θB captures common English words such as

“the", “a", and “of".

2. The k topic models Θ = {θ1, . . . , θk} capture the neutral words related to

the different topics in the collection.

3. The positive sentiment model θP models positive opinions.

4. The negative sentiment model θN captures negative opinions.

The generation of a document proceeds as follows in this model. First, it is

randomly decided whether the current word is a common English word or not.

If so, the word is drawn from θB. Otherwise, it is decided from which of the

k topics the word will be sampled. Then, it is decided whether the word will

describe the topic with a neutral, positive, or negative orientation. According

to this decision, the word is drawn from either θi (i being the selected topic),

θP , or θN , respectively. This process is repeated until all the words from the

document are generated.

The parameters of the model are estimated using a maximum a posteriori

estimation procedure. The prior distributions of the sentiment models are

learnt first. Then, they are combined with the data likelihood to estimate the

parameters of the maximum a posterior estimator. An important limitation of

this model is that sentiment models are the same for all the different topics.

Therefore, this model is not able to capture opinion words which are specific

to particular domains.

Another sentiment topic model, called the joint topic sentiment model (JST)

was proposed in (Lin and He, 2009). This model is unsupervised in the sense

that is does not depend on documents labelled by sentiment. The words are

drawn from a distribution jointly defined by the topics and the sentiment label.

The model incorporates opinion words as prior information, and in contrast to

TSM, it acknowledges that opinion words can be topic dependent.
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2.2.5 Twitter Sentiment Analysis

Posts on Twitter (or tweets) are considered a rich resource for sentiment anal-

ysis. There is empirical evidence that Twitter users tend to post opinions about

products or services (Pak and Paroubek, 2010), and tweets are short (at most

140-characters long) and usually straight to the point messages.

Opinion mining tasks that can be applied to Twitter data are polarity clas-

sification and opinion identification. Due to the short nature of tweets, a

sentence-level classification approach can be adopted, assuming that tweets

express opinions about one single entity. Furthermore, retrieving messages

from Twitter is a straightforward task using the public Twitter API.

One of the main limitations of using supervised learning models for Twit-

ter sentiment classification is the label sparsity problem introduced in Chap-

ter 1. This problem was tackled in (Go et al., 2009) following the emoticon-

annotation approach, in which emoticons are used as noisy indicator for la-

belling a training dataset in a distant supervision fashion. Smileys or emoti-

cons are visual cues that are associated with emotional states (Carvalho, Sar-

mento, Silva and de Oliveira, 2009). The idea of using emoticons as labels

was proposed in (Read, 2005) and is based on the idea that a textual pas-

sage containing a positive emoticon should have a positive orientation and the

presence of a negative emoticon should indicate a negative orientation. In

(Go et al., 2009), the Twitter API was used to retrieve tweets containing pos-

itive and negative emoticons, building a training dataset of 1, 600, 000 tweets.

Some emoticons which could be associated with positive and negative classes

are presented in Table 2.1. The best accuracy obtained on a manually anno-

tated dataset was of 83.7%. It was obtained using a maximum entropy classi-

fier. The feature set was composed of unigrams and bigrams selected by the

mutual information criterion. Furthermore, feature reduction was performed

by replacing repeated letters (e.g., huuungry to huungry, loooove to loove)

and replacing all mentions of Twitter users prefixed by the ’@’ symbol, with a

generic token named “USER”. In the same way URLs were replaced with a spe-

cial token with the name “URL”. Pak and Paraoubek conducted similar work

in (Pak and Paroubek, 2010). They included, in addition to positive and neg-

ative classes obtained from emoticons, an objective or neutral class obtained

from factual messages posted by Twitter accounts of popular newspapers and

magazines. The corpus was used to train a 3-class classifier.

The noisy nature of emoticons when used as sentiment indicators for data

labelling makes it very hard to achieve high performance with this approach
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positive negative
:) :(
:-) :-(
:D =(
=) :’(

Table 2.1: Positive and negative emoticons.

(Liu, Li and Guo, 2012). With the aim of taking advantage of both types of la-

bels, emoticon-based and human-annotated, a language model that combines

the two types was proposed in (Liu et al., 2012). Results showed that the inte-

gration of both resources produced better results than using them separately.

In (Zhang, Ghosh, Dekhil, Hsu and Liu, 2011), the authors proposed a lexicon-

based approach for annotating unlabelled tweets with polarity classes regard-

ing a given entity by aggregating the polarities of words from a lexicon with

positive and negative words using a scoring function. The automatically la-

belled tweets are then used for training a classifier. This technique does not

depend on supervision or manually labelled training data and is able to cap-

ture domain-specific sentiment patterns.

Another approach based on distant supervision and lexical prior knowledge

is proposed in (Speriosu, Sudan, Upadhyay and Baldridge, 2011). The au-

thors build a graph that has users, tweets, words, hashtags, and emoticons

as its nodes. A subset of these nodes is labelled by prior sentiment knowl-

edge provided by a polarity lexicon, the known polarity of emoticons, and a

message-level classifier trained with emoticons. These sentiment labels are

propagated throughout the graph using random walks.

A comprehensive survey of approaches exploiting unlabelled data for Twitter

sentiment analysis based on self-training, co-training, topic modelling, and

distant supervision is provided in (Silva, Coletta and Hruschka, 2016).

In (Kouloumpis et al., 2011) a supervised approach for Twitter sentiment

classification is proposed based on linguistic features. In addition to using

n-grams and part-of-speech tags as features, the authors use an opinion lex-

icon and particular characteristics from microblogging platforms such as the

presence of emoticons, abbreviations and intensifiers. Empirical evaluations

showed that although features created from the opinion lexicon are relevant,

microblogging-oriented features are the most useful.

In 2013, The Semantic Evaluation (SemEval) workshop organised the “Senti-
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ment Analysis in Twitter task”3 (Nakov et al., 2013) with the aim of promoting

research in social media sentiment analysis. The task was divided into two sub-

tasks: the expression level and the message level. The former task is focused

on determining the sentiment polarity of a message according to a marked

entity within its content. In the latter task, the polarity has to be determined

according to the overall message. The organisers released training and test-

ing datasets for both tasks. The team that achieved the highest performance

in both tasks among 44 teams was the NRC-Canada team (Mohammad et al.,

2013). The team proposed a supervised method based on SVM classifiers us-

ing a hand-crafted features: word n-grams, character n-grams, part-of-speech

tags, word clusters trained with the Brown clustering method (Brown, Des-

ouza, Mercer, Pietra and Lai, 1992), the number of elongated words (words

with one character repeated more than two times), the number of words with

all characters in uppercase, presence of positive or negative emoticons, the

number of individual negations, the number of contiguous sequences of dots,

question marks and exclamation marks, and features derived from polarity

lexicons (Mohammad et al., 2013). Two of these lexicons were generated au-

tomatically using large samples of tweets containing sentiment hashtags and

emoticons (NRC-Hashtag and Sentiment140 lexicons). The mechanisms used

for building those lexicons are detailed in Section 2.3.

In (Gonçalves, Araújo, Benevenuto and Cha, 2013) different sentiment anal-

ysis methods for polarity classification of social media messages are combined

through an ensemble scheme. The authors weighted the methods according

to their corresponding classification performance, showing that their combina-

tion achieves a better coverage of correctly classified messages. In a similar

manner, existing lexical resources and methods for sentiment analysis were

combined as meta-level features for supervised learning in (Bravo-Marquez,

Mendoza and Poblete, 2013). The experimental results indicated that the com-

bination of different resources provides significant improvement in accuracy

for polarity and subjectivity classification.

Deep learning approaches have also been adopted for Twitter sentiment

analysis. A supervised learning framework that uses sentiment-specific word

embeddings and hand-crafted features was developed in (Tang, Wei, Qin, Liu

and Zhou, 2014a). The word embeddings are obtained from emoticon-annotated

tweets using a tailored neural network that captures the sentiment informa-

tion of sentences and the syntactic contexts of words.

3http://www.cs.york.ac.uk/semeval-2013/task2/
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A convolutional neural network architecture is developed in (Severyn and

Moschitti, 2015b). Each tweet is represented as a matrix whose columns cor-

respond to the words in the tweet, preserving the order in which they oc-

cur. The words are represented by dense vectors or embeddings trained from

a large corpus of unlabelled tweets. The network is formed by the follow-

ing layers: an input layer with the given tweet matrix, a single convolutional

layer, a rectified linear activation function, a max pooling layer, and a soft-

max classification layer. The weights of the neural network are pre-trained

using emoticon-annotated data, and then trained with the hand-annotated

tweets from the SemEval competition. Experimental results show that the

pre-training phase allows for a proper initialisation of the network’s weights,

and hence, has a positive impact on classification accuracy.

Incremental Approaches

The methods for Twitter sentiment analysis discussed so far do not consider

the fact that the sentiment pattern can change over time due to sentiment-

drift. A real-time sentiment classifier needs to be constantly updated in order

to produce reliable results over time. Algorithms focused on learning from

time evolving streams are referred to as “data stream mining models”.

To the best of our knowledge, the first work studying social media opinions

from a stream data mining point of view was (Bifet and Frank, 2010). Three

fast incremental learning algorithms - Multinomial Naive Bayes, Stochastic

Gradient Descent (SGD), and the Hoeffding Tree - were compared over two

large collections of tweets: the emoticon-based training dataset used in (Go

et al., 2009) and the Edinburgh corpus described in (Petrović, Osborne and

Lavrenko, 2010). As the former dataset was formed purely of tweets with

emoticons, in the second dataset only tweets with positive and negative emoti-

cons were considered for training and testing the classifier. In this way, the

training labels were acquired in both datasets, in the same way as in (Go

et al., 2009). Furthermore, tweets were pre-processed using the same textual

features as in previous batch-learning approaches (Go et al., 2009; Pak and

Paroubek, 2010). The Massive Online Analysis (MOA) framework was used

for the experiments using prequential accuracy and the kappa statistic for

evaluation. The authors argued that the kappa measure is more suitable for

unbalanced streams. The results indicated that, on the one hand, Hoeffding

trees are not suitable for high-dimensional streams, and on the other hand,

SGD and Naive Bayes perform comparably for this problem. A very strong
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assumption made by this model is that sentiment labels are available across

the entire stream. However, as a consequence of the label sparsity problem,

it would be very difficult to continuously obtain labelled data to update the

sentiment model and to properly address sentiment drift (Calais Guerra et al.,

2011).

Bifet et al. developed MOA-TweetReader in (Bifet et al., 2011) as an exten-

sion of the MOA framework. This extension allows users to read tweets in real

time, store the frequency of the most frequent terms, detect change in the

frequency of words, and perform sentiment analysis in the same way as the

aforementioned work.

A self-augmenting training procedure was proposed in (Silva et al., 2011).

The learning task starts with a small sample of labelled examples used to train

a classification rule learner. The classification model is formed by a set of rules

of the form X → si, where the antecedent X corresponds to a set of terms and

the consequent si is the predicted orientation. New messages are classified

through a weighted vote based on the confidence values of all rules where the

antecedent terms are observed. The confidence of a rule is the conditional

probability of the polarity si given the terms in X .

In this model, only the terms but not the polarity are known for future mes-

sages arriving from the stream. In order to deal with sentiment drift, the clas-

sification model is updated from unlabelled data in an incremental fashion.

New rules are added to the classifier when the sentiment score calculated for

arriving messages is higher than a user-specified threshold.

The model was tested on a dataset of hand-annotated tweets associated with

different events that occurred in 2010. The results showed that the prediction

performance remains stable, or even increases, as the data stream passes and

new rules are extracted.

Another approach that also exploits unlabelled messages for updating a sen-

timent classifier was proposed in (Zimmermann, Ntoutsi and Spiliopoulou,

2014). The classifier adapts itself from unlabelled messages and additionally,

introduces a mechanism to forget old messages. These tasks are referred to

as forward adaptation and backward adaptation respectively.

The model takes as input a seed of labelled messages which are used to train

a Multinomial Naives Bayes (MNB) classifier. In the forward adaptation step

the arriving messages are classified with the initial classifier and evaluated

according to a criterion of usefulness. This value corresponds to the difference

in entropy of dataset before and after including the new labelled message. If
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the usefulness value is above a threshold α ∈ (−1, 0) the parameters of the

MNB classifier are updated. Afterwards, in the backward adaptation step, all

word counts of the MNB classifier are updated using an exponential ageing

function reducing the influence of old messages in the model.

We can see that both approaches, (Silva et al., 2011) and (Zimmermann

et al., 2014), adapt the sentiment classifier from unlabelled data. The main

difference is the way in which they consider the age of the messages. In

(Silva et al., 2011) no distinction between old and new messages is made,

and in (Zimmermann et al., 2014) the model discards old messages using an

exponential ageing function.

There are two clear limitations for learning text-based models for time evolv-

ing sentiment analysis: sentiment drift and label sparsity. In order to tackle

these limitations, a transfer learning approach was developed in (Calais Guerra

et al., 2011). The idea behind transfer learning is to solve a source task which

is somehow related to the target task, in scenarios where solving the former

is much easier than solving the latter. The predictions made in the source

domain are transferred to the target domain (Pan and Yang, 2010). In this

proposal, a user-level analysis is transfered to solve a problem at the text-

level. The target and the source tasks are the following: real time sentiment

classification of social media messages, and social media user bias prediction,

respectively.

The approach to predicting user bias is based on sociological theories claim-

ing that humans tend to have biased opinions on different topics. The user bias

towards a topic is quantified through social media endorsements. In the case

of Twitter, user endorsements are represented by a directed graph, in which

the vertices are users, and the edges (u, v) correspond to retweets made by

user u of tweets posted by user v.

The problem is modelled as a relational learning task over a network of users

connected by endorsements. The hypothesis is that similar users share a sim-

ilar bias regarding a particular topic. Given a topic such as a political party or

a sport team, a user can support K possibles sides in relation to it. Each user

u in the network is represented by a bias vector
−→
Bu = [Bu1, . . . , BuK ], where

each element Bui corresponds to the bias of the user towards the i-th side of

the topic. In order to estimate the bias vector of all users in the network, a

new graph called the Opinion Agreement Graph (OAG), is created. This is a

weighted undirected graph where the vertices correspond to the users, and

the weights of the edges u, v are calculated by averaging the following two
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similarity measures:

1. The active similarity α(u, v), which measures the intensity of the endorse-

ment of users u and v relative toward a given set of users. This measure

is calculated using frequent pattern mining techniques, and is defined as

the value of the lift measure of pair (u, v) in a database of transactions

where each transaction contains the users who endorsed a given user.

The lift measure compares the observed co-occurrence frequency of two

elements with the expected co-occurrence frequency, assuming that both

are mutually independent of each other.

2. The passive similarity ρ(u, v), which measures the intensities of the en-

dorsements of a given set of users towards users u and v. It is calculated

in the same way as the active similarity but over a different database

of transactions. The transactions of this database corresponds to all the

users endorsed by a given user.

The bias vector of all nodes in the graph is calculated by propagating the

vector of a few labelled users referred to as “attractor”, who present a clear

bias towards particular sides of the topic, e.g., official profiles of political can-

didates or political parties. The propagation is done by a random walk from

the attractor nodes to the rest of the nodes in the OAG. This is based on the

idea of propagating labels in graphs.

Once the user bias vectors of all users have been calculated, they are used

for real-time polarity classification of arriving messages. The transfer is done

through a propagation across terms assuming that words in a message will

have a certain polarity toward an entity if they are adopted more frequently

by users biased towards the same polarity. Assuming t is a term which is used

to refer to a certain entity e, and let U(t, e) be the set of users referring to the

entity e using term t, a new vector
−→
B t,e is calculated that consists of the sum

vector of all users in U(e, t):

−→
B t,e =

∑
u∈U(e,t)

−→
B u

Let
−→
B i
t,e be the strength of component i in vector

−→
B t,e. For each term in a

message to be classified, the probability that the term refers to the entity e

with a certain polarity i (e.g., positive or negative) is calculated according to
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the following expression:

p̂(polarity = i|t, e) =

−→
B i
t,e

||
−→
B t||

Finally, the overall polarity of the message is calculated by taking the polar-

ity with the highest probability for the different terms in the message. This

approach can deal with concept drift by incrementally updating
−→
B t,e when

new tweets arrive. The authors’ argument is that the user bias vector is less

susceptible to concept drift than a text-based sentiment pattern for a given

topic.

The approach was tested over a dataset of tweets related to the Brazilian

presidential election campaign of 2010 and the 12 most popular Brazilian soc-

cer teams. The method was able to correctly classify 80% to 90% of the tweets

by knowing the bias of 10% of the users who tweeted about the topics.

Guerra et al. (2014) proposed a method to obtain labelled sentiment data

from a social media stream together with a feature representation suitable for

dealing with sentiment drifts. Their approach follows the distant supervision

paradigm, but instead of relying on emoticons or other text-based sentiment

clues, it exploits social behaviour patterns usually observed in online social

networks. These patterns are referred to as self-report imbalances and are

defined as follows:

1. Positive-negative sentiment report imbalance: users tend to express pos-

itive feelings more frequently than negative ones.

2. Extreme-average sentiment report imbalance: users tend to express ex-

treme feelings more than average feelings.

The first pattern is used to obtain labelled data for supervised classifiers on

polarised topics, e.g., politics and sports. The idea is that a positive event

for one group induces negative emotions toward the opposite group. Then,

assuming that the size of the polarised groups for an event are known, the

positive-negative imbalance is used to generate a probabilistic sentiment label

for the event in a specific time frame. This is done by counting the number of

users in the different groups that post a message during the time frame. It is

important to note that these labels do not correspond to a particular message,

but to the group of messages mentioning the entity in the time window. These

labels represent uncertainty of the social context and can be used to predict

the dominant sentiment during a time window.
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The second pattern is used to create a feature representation named text

arousal focused on terms appearing at spikes in the social stream. Time

windows have a varying volume of messages, and further, according to the

extreme-average report imbalance, spikes of activity in the stream tend to

contain highly emotional words. Therefore, emotional words, which in turn

are the most informative words for sentiment classification, will be more likely

to occur during spikes of activity in the social network. For this reason, the

feature representation includes the number of times that a term appears in

high-volume time windows.

The text arousal model was compared with static representations based on

term-frequency, and results indicated that it is more suitable to capture sen-

timent drifts. Finally, the overall method based on self-report imbalances was

tested on sport events in Twitter, achieving accuracies of up to 84%.

2.3 Polarity Lexicon Induction

We studied in Section 2.2.2 how lexical knowledge about the sentiment of

words can benefit the polarity classification of documents, sentences, and

tweets. An opinion, polarity, or sentiment lexicon is a dictionary of opin-

ion words with their corresponding sentiment categories or semantic orien-

tations. A semantic orientation is a numerical measure for representing the

polarity and strength of words or expressions. Lexicons can be manually cre-

ated by taking words from different sources, and determining their sentiment

values by human judgements. As this task can be very labour intensive, the la-

belling can be conducted through crowdsourcing mechanisms. An alternative

approach is to build the lexicon automatically, which can be done by exploiting

two types of resources: semantic networks and document collections. Previ-

ous work on opinion lexicon induction from these two type of resources is

presented in the following two subsections. Afterwards, we describe popu-

lar existing lexicons for sentiment analysis and analyse how these resources

interact with each other.

2.3.1 Semantic Networks

A semantic network is a network that represents semantic relations between

concepts. The simplest lexicon induction approach, based on a semantic net-

work of words such as WordNet4, is to expand a seed lexicon of labelled opin-

4http://wordnet.princeton.edu/
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ion words using synonyms and antonyms from the lexical relations (Hu and

Liu, 2004; Kim and Hovy, 2004). The hypothesis behind this approach is that

synonyms have the same polarity and antonyms have the opposite one. This

process is normally iterated several times. In (Kamps, Marx, Mokken and

De Rijke, 2004), a graph is created using WordNet adjectives as vertices and

the synonym relations as edges. The orientation of a term is determined by

its relative distance from the two seed terms good and bad. In (Esuli and

Sebastiani, 2005), a supervised classifier is trained using a seed of labelled

words that is obtained through expansion based on synonyms and antonyms.

For each word, a vector space model is created from the definition or gloss

provided by the WordNet dictionary. This representation is used to train a

word-level classifier that is used for lexicon induction. An equivalent approach

was applied later to create SentiWordNet5 (Baccianella, Esuli and Sebastiani,

2010; Esuli and Sebastiani, 2006). In SentiWordNet, each WordNet synset or

group of synonyms is assigned to classes positive, negative and neutral, with

soft labels in the range [0, 1].

Another well-known lexical resource for sentiment analysis built from concept-

level semantic networks is SenticNet6, which labels multi-word concepts ac-

cording to both affective and semantic information. SenticNet is based on the

sentic computing paradigm, which focuses on a semantics-preserving repre-

sentation of natural language concepts and sentence structure (Cambria and

Hussain, 2015). Multiple techniques have been exploited along the different

versions of SenticNet. The first two versions were built using graph-mining

and dimensionality-reduction techniques, and the third version integrates mul-

tiple knowledge sources by setting up pathways between concepts.

The automatic processing of emotions is the main focus of the field of Af-

fective Computing, which is closely related to sentiment analysis (Cambria,

2016). WordNet-Affect7 is a semantic network for affective computing in which

some WordNet synsets are mapped into affective states corresponding to emo-

tion and mood (Valitutti, 2004). WordNet-Affect was used together with Sen-

ticNet for building EmoSenticSpace (Poria, Gelbukh, Cambria, Hussain and

Huang, 2014), a knowledge-base of natural language concepts annotated with

emotion labels and polarity scores. This resource was built using fuzzy c-

means clustering and support vector machine (SVM) classification.

5http://sentiwordnet.isti.cnr.it/
6http://sentic.net/
7http://wndomains.fbk.eu/wnaffect.html
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ConceptNet8 is a semantic network of commonsense knowledge formed by

over 1.6 million assertions composed of two concepts connected by a relation

e.g., car usedFor driving. There are 33 different types of relations such as IsA,

PartOf and UsedFor. Lexicon expansion methods based on this resource were

proposed in (Tsai, Wu, Tsai and Hsu, 2013; Weichselbraun, Gindl and Scharl,

2014; Wu and Tsai, 2014). In (Tsai et al., 2013), each concept on ConceptNet is

given a sentiment score using iterative regressions that are then propagated

via random walks. However, considering that not all relations from Concept-

Net are necessarily related to sentiment, the model was further improved in

(Wu and Tsai, 2014) using sequential forward search to find the best combina-

tion of sentiment-associated relations from ConceptNet. The model performs

a bias correction step after the random walk process to reduce the variability

in the obtained polarities.

A drawback of opinion lexicons is their lack of contextual information. A

method for contextualising and interpreting ambiguous sentiment terms in

opinion lexicons is proposed in (Weichselbraun et al., 2014). The method per-

forms three steps to add positive and negative context terms to extend the

expressiveness of the target resource: 1) identify ambiguous sentiment terms

from SenticNet, 2) extract context information from a domain-specific corpus,

and 3) associate the extracted context information with knowledge sources

such as ConceptNet and WordNet.

Lexicons built from semantic networks are unable to capture sentiment in-

formation from words or concepts that go beyond the exploited network. Be-

cause words or concepts included in semantic networks such as WordNet and

ConceptNet are based on formal English rather than informal expressions, the

resources expanded from these networks will exhibit limitations when used

with Twitter.

2.3.2 Corpus-based approaches

Corpus-based approaches exploit syntactic or co-occurrence patterns to in-

duce a lexicon based on the words found within a collection of unstructured

text documents.

In (Hatzivassiloglou and McKeown, 1997) the authors started with a set of

adjectives whose semantic orientation was known a priori and then discov-

ered new adjectives with their semantic orientations from a corpus by apply-

ing some linguistic conventions. They show, using a log-linear regression, that

8http://conceptnet5.media.mit.edu/
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conjunctions between adjectives provide indirect information about the orien-

tation. For example, adjectives connected with the conjunction “and” tend to

have the same orientation and adjectives connected with the conjunction “but”

tend to have the opposite orientation. This approach enables the extraction of

domain-dependent information and the adaptation to new domains when the

corpus of documents is changed.

The PMI-SO score, which was previously introduced in Section 2.2.2 (Equa-

tion 2.2) for estimating the semantic orientation of phrases, has been widely

used for lexicon induction. Recapitulating, the PMI-SO of a target word or

phrase corresponds to the difference between two PMI scores: 1) the PMI

of the target word with a positive sentiment, and 2) the PMI of the target

word with a negative sentiment. Apart from the original idea of counting the

number of hits returned by a search engine in response to the target word to-

gether with known positive and negative words (Turney, 2002), other similar

approaches have been used for Twitter lexicon induction based on associations

between words and message-level sentiment labels (Becker, Erhart, Skiba and

Matula, 2013; Kiritchenko, Zhu and Mohammad, 2014; Mohammad et al.,

2013; Zhou, Zhang and Sanderson, 2014). In (Becker et al., 2013), tweets are

labelled with a classifier trained from manually-annotated tweets using thresh-

olds for the different classes to ensure high precision. In (Zhou et al., 2014),

the emoticon-annotation approach is used to create domain-specific lexicons.

In (Kiritchenko et al., 2014; Mohammad et al., 2013), tweets are labelled with

emoticons and hashtags associated with emotions to create two different lexi-

cons. These lexicons are tested for tweet-level polarity classification.

In (Mohammad and Kiritchenko, 2015), the authors collected around 50, 000

tweets with hashtags corresponding to the six Elkman emotions: #anger, #dis-

gust, #fear, #happy, #sadness, and #surprise, referred to as the Hashtag

Emotion Corpus. This corpus was used for creating a Twitter-specific emotion-

association lexicon by mapping all the unigrams and bigrams from the cor-

pus into strength association scores related to the six Elkman emotions. The

scores between a word w and an emotion e are calculated based on PMI:

SoA(w, e) = PMI(w, e)− PMI(w,¬e)

The same article describes the creation of a fine-grained Twitter-oriented

emotion lexicon created in an analogous way for 585 different emotion-associated

hashtags.

Bahrainian, Liwicki and Dengel (2014) proposed another corpus-based model
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based on an unsupervised message-level sentiment classifier and the Twitter

API. The message-level classifier is based on a seed lexicon and opinion rules

for handling intensifiers, diminishers, and negations. For each target word to

be included in the lexicon, a set of tweets containing the word is retrieved by

sending it to the API. Then, the word is classified by averaging the predicted

sentiment obtained by the message-level classifier for the retrieved tweets.

In (Severyn and Moschitti, 2015a) words are used as features for predict-

ing the polarity of emoticon-annotated tweets using a linear SVM. The SVM

weight’s are interpreted as word-level sentiment associations in the same way

as in (Bifet and Frank, 2010). A similar approach is followed in (Vo and Zhang,

2016) using neural networks, in which each word receives a positive and neg-

ative weight.

An alternative approach is to represent Twitter words as embedding vec-

tors that are classified into sentiment classes using machine learning and a

seed lexicon to label the training data. In (Amir, Ling, Astudillo, Martins,

Silva and Trancoso, 2015), state-of-the-art word embeddings such as skip-

grams (Mikolov et al., 2013), continuous bag-of-words (Mikolov et al., 2013),

and Glove (Pennington, Socher and Manning, 2014) were used as features

in a regression model to determine the association between Twitter words

and positive sentiment. In (Tang, Wei, Qin, Zhou and Liu, 2014b), a hybrid

loss function for learning sentiment-specific word embeddings is proposed.

The embeddings are obtained by combining syntactic information provided

by the skip-gram model (Mikolov et al., 2013) and sentiment information pro-

vided by emoticon-annotated tweets. A transfer learning approach is followed

in (Castellucci et al., 2015), by transferring sentiment labels from tweets to

words. Words are represented by skip-gram embeddings whereas tweets are

represented as the sum of the word vectors appearing in it. Note that in this

way words and tweets reside in the same space. A message-level polarity clas-

sifier is trained from emoticon-annotated tweets and deployed on the word

vectors to perform the lexicon induction.

A model for creating domain-specific opinion lexicons is proposed in (Hamil-

ton, Clark, Leskovec and Jurafsky, 2016). Words from a source corpus of un-

labelled text data (not necessarily tweets) are represented by embedding vec-

tors. A square matrix of size |V |×|V | (V is the vocabulary), is built where each

entry (i, j) corresponds to a smoothed PMI score of the word pair wi,wj based

on co-occurrence counts within fixed-size sliding windows of text. This matrix

is projected onto a low-dimensional space using singular value decomposition
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(SVD) and used for building a graph of words associations. Each word in the

graph is connected with its k most similar words according to cosine similar-

ity in the low-dimensional space. The sentiment induction is carried out by

propagating the known polarities of a seed lexicon to the remaining nodes in

the graph using random walks. The model is used for creating domain-specific

sentiment lexicons for different Reddit9 communities. Examples of words ex-

hibiting different polarities in different communities are the words “soft” and

“animal”, which are positive in a community dedicated to female perspectives

and gender issues but negative in sports. Conversely, the words “crazy” and

“insane” exhibit contradictory polarities in both domains. The same approach

was also used for studying the evolution of opinion words by building lexicons

from documents from the Corpus of Historical American English10 written in

consecutive decades between 1850 to 2000. The authors found that several

words have changed their polarity over time, for instance the word “terrific”

has changed from a negative to a positive polarity in the last decades. These

results provide further evidence supporting the sentiment-drift problem dis-

cussed in Chapter 1.

2.4 Lexical Resources for Sentiment Analysis

In the following, we describe some of the most popular lexical resources for

sentiment analysis.

OpinionFinder or MPQA Subjectivity Lexicon This is a hand-made lexical re-

source created by Wilson et al. (2005). It is part of OpinionFinder11, a system

that automatically detects subjective sentences in document corpora. A group

of human annotators tagged words and phrases from a corpus of documents

according to the polarity classes positive, negative, and neutral. A pruning

phase was conducted over the dataset to eliminate tags with low agreement.

Thus, a list of sentences and single words with their polarity tags was consoli-

dated. The single words (unigrams) tagged as positive or negative correspond

to a list of 6,884 English words. The lexicon also includes 17 words with mixed

positive and negative polarities tagged as “both”.

9https://www.reddit.com/
10http://corpus.byu.edu/coha/
11http://mpqa.cs.pitt.edu/opinionfinder/opinionfinder_2/
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Bing Liu’s Opinion Lexicon This lexicon is maintained and distributed by Bing

Liu12 and was used in several papers authored or co-authored by him (Liu,

2012). The lexicon consists of 2,006 positive words and 4,683 negative words.

It includes misspelled words, slang words and some morphological variants.

ANEW Lexicon The Affective Norms for English Words lexicon (ANEW) pro-

posed by Bradley and Lang (Bradley and Lang, 1999) provides emotional rat-

ings for around 1,000 English words. These ratings are calculated accord-

ing to three different psychological reactions of a person to a specific word:

valence (the level of pleasantness), dominance (the degree of control), and

arousal (the intensity of emotion). The reaction “valence”, which ranges in

the scale from pleasant to unpleasant, is the most useful value for polarity

calculation.

AFINN Lexicon Inspired by ANEW, Nielsen (Årup Nielsen, 2011) created the

AFINN lexicon, which is more focused on the language used in microblogging

platforms. ANEW was released before the rise of microblogging and hence,

many slang words commonly used in social media were not included. Consid-

ering that there is empirical evidence about significant differences between

microblogging words and the language used in other domains (Baeza-Yates

and Rello, 2011), a new version of ANEW was required. The word list includes

slang and obscene words and also acronyms and Web jargon. Positive words

are scored from 1 to 5 and negative words from -1 to -5. The lexicon includes

2,477 English words.

SentiWordNet Lexicon Already discussed in Section 2.3, SentiWordNet 3.0

(SWN3 ) is an improvement over the original SentiWordNet proposed in (Esuli

and Sebastiani, 2006). It is based on WordNet, the well-known lexical database

for English where words are clustered into groups of synonyms known as

synsets (Miller, Beckwith, Fellbaum, Gross and Miller, 1990). In SentiWord-

Net each synset is automatically annotated in the range [0, 1] according to

positivity, negativity and neutrality.

Harvard General Inquirer The Harvard General Inquirer is a lexicon devel-

oped by Stone, Dunphy, Smith and Ogilvie (1966). The words of the lexicon

are tagged according to multiple dimensions such as polarity, emotions, and

12http://www.cs.uic.edu/ liub/FBS/sentiment-analysis.html
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semantics. The lexicon has 1,915 and 2,291 positive and negative words re-

spectively.

NRC word-emotion association Lexicon This lexicon contains more than 14,000

distinct English words annotated according to both emotion and sentiment cat-

egories using the crowdsourcing Amazon Mechanical Turk platform. The emo-

tion categories come from the Plutchick wheel of emotions (Plutchik, 2001)

with categories joy, trust, sadness, anger, surprise, fear, anticipation, and dis-

gust. The sentiment categories correspond to positive and negative polarities.

All these categories are not mutually exclusive, and hence, a word can be

tagged according to multiple emotions or polarities. Additionally, there are

neutral words that are not associated with any emotion or polarity category.

NRC-Hashtag The NRC-Hashtag Sentiment Lexicon is an automatically cre-

ated sentiment lexicon which was built from a collection of 775,310 tweets

that contain positive or negative hashtags such as #good, #excellent, #bad,

and #terrible. The tweets are labelled as positive or negative according to

the hashtag’s polarities. A sentiment score is calculated for all the words and

bigrams found in the collection using the point wise mutual information (PMI)

measure between each word and the corresponding polarity label of the tweet.

The resource was created by the NRC-Canada team that won the SemEval task

for Twitter polarity classification (Mohammad et al., 2013).

Sentiment140 Lexicon This lexicon was also provided by the NRC-Canada

team and was created following the same approach used for creating the NRC-

Hashtag lexicon. Instead of using hashtags as tweet labels, a corpus of 1.6

million tweets with positive and negative emoticons was used to calculate the

sentiment words. The tweet collection is the same one as the one used for

training the classifier proposed in (Go et al., 2009).

SentiStrength This is a lexicon-based sentiment analysis method13 that re-

turns positive and negative numerical scores for a given text passage (Thelwall

et al., 2012). The positive score ranges from 1 (not positive) to 5 (extremely

positive) and the negative one ranges from -1 (not negative) to -5 (extremely

negative). The lexicon is hand-annotated and includes both formal English

words and informal words used in social media (e.g., luv and lol), scored by

13http://sentistrength.wlv.ac.uk/
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sentiment. The scores can also be adapted to a specific domain using machine

learning. SentiStrength applies linguistic rules for dealing with negations,

questions, booster words, and emoticons. These are used together with the

lexicon for computing the positive and negative outputs.

SenticNet This is a concept-based semantic network for sentiment analysis,

which we have already discussed in Section 2.3. SenticNet provides both sen-

timent and semantic information from over 30, 000 common sense knowledge

concepts. It also provides a parser that returns the following two sentiment

variables associated with each of the concepts found in a given message: the

polarity score, and the sentic vector. The polarity score is a real value. The

sentic vector is composed of emotion-oriented scores regarding the following

emotions: pleasantness, attention, sensitivity, and aptitude. These dimensions

are based on the Hourglass model of emotions (Cambria, Livingstone and Hus-

sain, 2012), which in turn, is inspired by Plutchik’s studies on human emotions.

2.4.1 Comparison of Lexicons

In this section we compare seven popular lexical resources for sentiment anal-

ysis: SWN3, NRC-emotion, OpinionFinder, AFINN, Liu Lexicon, NRC-Hashtag,

and S140Lex. The aim of this study is to understand which type of informa-

tion is provided by these resources and how they are related to each other.

The lexicons may be compared according to different criteria: their senti-

ment scope or the type of variable used for representing their affective values,

the approach used to build them, and the words that they contain. Regard-

ing the sentiment scope, we have two lexicons with nominal polarity cate-

gories: OpinionFinder and Liu, four lexicons with numerical polarity scores

indicating sentiment strength: AFINN, SWN3, NRC-hash, and S140Lex, and

one multi-labelled lexicon with binary emotion-oriented associations: NRC-

emotion, which also provides nominal polarity values.

Regarding the mechanisms used to build the lexicons, there are manually

and automatically created resources. The lexicons Liu, AFINN, OpinionFinder,

and NRC-emotion were manually created. They were created by taking words

from different sources, and their sentiment values were mostly determined

by human judgements using tools such as crowdsourcing in the case of NRC-

emotion. SWN3 is a resource created automatically, whose words were taken

from a semantic network (WordNet synsets) and its sentiment values com-

puted using machine learning (Section 2.3). The lexicons NRC-hash and S140Lex
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were automatically built from tweets annotated with hashtags and emoticons,

respectively.

Intersection OpFinder AFINN S140Lex NRC-hash Liu SWN3 NRC-emotion

OpFinder 6, 884 × × × × × ×
AFINN 1, 245 2, 484 × × × × ×
S140Lex 3, 460 1, 789 60, 113 × × × ×
NRC-hash 3, 541 1, 816 27, 012 42, 586 × × ×
Liu 5, 413 1, 313 3, 268 3, 312 6, 783 × ×
SWN3 6, 199 1, 783 16, 845 17, 314 5, 480 146, 977 ×
NRC-emotion 3, 596 1, 207 8, 815 8, 995 3, 024 13, 634 14, 182

Table 2.2: Intersection of words.

(a) (b)

Figure 2.1: Venn diagrams of the overlap between opinion lexicons. a) lexicons cre-
ated manually, and b) lexicons created automatically.

The number of words in the intersection of two lexicons is shown in Ta-

ble 2.2. From the table we can see that resources created automatically,

SWN3, NRC-hash, and S140Lex are much larger than resources created man-

ually. This is intuitive, because SWN3 was created from WordNet, which is a

large semantic network, and NRC-hash and S140Lex were both formed by all

the different words found in their respective large collections of tweets. The

overlap of the lexicons created manually is better represented in the first Venn

diagram shown in Figure 2.1. We observe that Liu and OpinionFinder exhibit

significant overlap. The second Venn diagram in Figure 2.1 considers lexicons

created automatically. We can see that the overlap between both lexicons built

from Twitter data is greater than the overlap they have with SWN3. This sug-

gests that Twitter-made lexicons contain several expressions that are specific

to Twitter.

The level of uniqueness of each resource is shown in Table 2.3. This value

corresponds to the fraction of words of the lexicon that are not included in any
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of the remaining resources. We can see that while lexicons created manually

tend to have a low uniqueness, resources created automatically tend to have

a substantial level of uniqueness. Nevertheless, the AFINN lexicon contains

several words that are not included in other lexicons despite being the smallest

lexicon created manually. This is because AFINN contains several Internet

acronyms and slang words.

Lexicon Annotation Uniqueness Neutrality

OpFinder Manual 0.01 0.06
AFINN Manual 0.19 0.00

S140Lex Automatic 0.51 0.62
NRC-hash Automatic 0.29 0.72

Liu Manual 0.05 0.00
SWN3 Automatic 0.82 0.74

NRC-emotion Manual 0.01 0.54

Table 2.3: Neutrality and uniqueness of each Lexicon. The lexicons are categorised
according to the annotation mechanism.

We also studied the level of neutrality of each resource, shown in the second

column of Table 2.3. This value corresponds to the fraction of words of the

lexicon that are very likely to be neutral, and hence, are not sentiment-bearing

words. The criteria for determining if a word is neutral varies from one lexicon

to another. In OpinionFinder, neutral words are marked explicitly. Conversely,

AFINN and Liu do not have neutral words. For the case of S140Lex and NRC-

hash we consider as neutral all the words for which the absolute value of the

score was less than one. In a similar manner, we consider as neutral all the

words of SWN3 for which the neutral probability was one. Finally, for NRC-

emotion we consider as neutral, all words that are not associated with any

emotion or polarity class. Regarding the lexicons created manually we see

that only NRC-emotion has a significant level of neutrality. Resources created

automatically present the highest levels of neutrality. This is because they

include all the words from the sources used to create them (WordNet and

Twitter). Consequently, as WordNet and Twitter contain a great diversity of

words or expressions, it is expected for their derived lexicons to contain many

non sentiment-bearing words.

In addition to comparing the words contained in the lexicons, we also com-

pared the level of agreement between their positive and negative polarities.

We extracted the 609 words that intersect all the different lexicons. After-

wards, all the sentiment values assigned by each lexicon were converted to

polarity categories positive and negative. For lexicons with numerical scores,
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AFINN, S140Lex, and NRC-hash, we used the score’s sign to determine posi-

tive and negative labels. For SW3N we use the sign of the difference between

positive and negative probabilities. For NRC-emotion we used the polarity

dimensions provided by the lexicon. The agreement between two lexicons is

calculated as the fraction of words from the global intersection where both

lexicons assigned the same polarity label to the word. The levels of agreement

between all lexicons are shown in Table 2.4. From the Table we see that auto-

matically created lexicons show a high level of disagreement with the human-

made lexicons and even greater levels of disagreement between each other,

e.g., SWN3 with S140Lex, and SWN3 with NRC-hash. That means that these

larger resources tend to provide noisy information, which is far from being

consolidated. On the other hand, human judgements are more likely to agree

with each other.

Agreement OpFinder AFINN S140Lex NRC-hash Liu SWN3 NRC-emotion

OpFinder 1 × × × × × ×
AFINN 0.99 1 × × × × ×
S140Lex 0.82 0.82 1 × × × ×
NRC-hash 0.79 0.79 0.72 1 × × ×
Liu 0.99 0.99 0.82 0.79 1 × ×
SWN3 0.85 0.76 0.66 0.64 0.84 1 ×
NRC-emotion 0.99 0.99 0.84 0.82 0.99 0.86 1

Table 2.4: Agreement of lexicons.

From the 609 words that are contained in all the lexicons, 292 present at

least one disagreement between two different lexicons. A group of words

presenting disagreements along the different types of lexicons is presented in

Table 2.5. We can see that words such as “excuse”, “joke”, and “stunned” may

be used to express either positive and negative opinions, depending on the

context. Considering that it is very hard to associate all the words with a single

polarity class, we think that emotion tags more accurately explain the diversity

of sentiment states triggered by these kinds of words. For instance, the word

“stunned”, which is associated with both positive and negative polarities, is

also associated with surprise and fear emotions. As this word would more

likely be negative in the context of “fear”, it would also be more likely to be

“positive” in the context of “surprise”.

All the insights revealed from this analysis indicate that lexical resources

for sentiment analysis complement each other, providing different sentiment

information and also exhibit different levels of noise. A previous study on the
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word OpFinder AFINN S140Lex NRC-hash LiuLex SWN3 NRC-emotion

excuse pos -1 0.34 -1.08 neg 0.00 neg
futile neg 2 0.05 0.07 neg -0.50 sad
irresponsible neg 2 -1.11 -1.87 neg 0.50 neg
joke pos 2 -0.02 -1.50 neg 0.32 neg
stunned pos -2 -0.14 0.38 pos -0.31 neg, sur, fea

Table 2.5: Sentiment values for different words. The scores in the SWN3 column cor-
respond to the difference between the positive and negative probabilities
assigned by SWN3 to the word.

relationship between different opinion lexicons was presented as a tutorial by

Christopher Potts at the Sentiment Analysis Symposium14.

2.5 Analysis of Aggregated Social Media Opinions

As has been discussed in this Chapter, sentiment analysis applied to social

media is a blossoming field of research. Several applications have been de-

veloped using sentiment analysis in different contexts, including marketing

studies (Jansen et al., 2009) and social sciences studies (Dodds and Danforth,

2010). In this section we review works conducting aggregated analysis of

opinionated data aimed at understanding temporal aspects of opinions and

further, at predicting future events from social media.

2.5.1 Temporal Aspects of Opinions

The temporal study of opinions is concerned with evaluating the aggregated

sentiment of a target population for a certain time period. In this direction, a

tool called Moodviews was proposed in (Mishne and de Rijke, 2006) to analyse

temporal change of sentiment from LiveJournal15 blogs. Users of LiveJournal

can label their posts with mood tags from a list of 132 categories, e.g., amused

or angry. Moodviews tracks the stream of these tags and allows the visualisa-

tion of mood changes through time.

A temporal analysis of sentiment events using a method based on Condi-

tional Random Field (CRF) was performed in (Das, Kolya, Ekbal and Bandy-

opadhyay, 2011). The authors included sentiment features of events in order

to identify temporal relations between different events from text sources.

In (Mishne and de Rijke, 2006), it was shown that opinions exhibit a certain

14http://sentiment.christopherpotts.net/lexicons.html
15http://www.livejournal.com/
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degree of seasonality in Twitter. The authors found that people tend to awake

in a good mood that decays during the day and that people are happier on

weekends than weekdays.

The online detection of temporal changes in public opinion is studied in (Ak-

cora, Bayir, Demirbas and Ferhatosmanoglu, 2010). The authors state that a

breakpoint in public opinion is formed by a change in both the emotion pattern

and the word pattern of Twitter messages. The tweets on a certain topic TT

in a time period T are used to create both a vector of sentiment dimensions
−→v and a set formed by the words within the tweets Set(Ti), where the vector

represents the sentiment pattern, and the set represents the word pattern.

Similarity measures are used to compare the word and the sentiment patterns

between different periods of tweets. A period Tn must satisfy the following

conditions in the two patterns in order to be considered as a breakpoint:

Sim(Tn−1, Tn) < Sim(Tn−2, Tn−1) (2.3)

Sim(Tn−1, Tn) < Sim(Tn, Tn+1). (2.4)

In (O’Connor et al., 2010), two mechanisms for measuring public opinion

were compared: polls and opinions extracted from Twitter data. The authors

compared several surveys on consumer confidence and political opinion, like

the Gallup Organization’s Economic Confidence Index and the Index of Con-

sumer Sentiment (ICS), with sentiment ratio time series. The series were

created from Twitter messages by counting positive and negative words from

an opinion lexicon and computing the following expression:

xt =
countt(pos. word ∧ topic word)

countt(neg. word ∧ topic word)
(2.5)

Furthermore, the series were smoothed using a moving average in order to

reduce volatility and derive a more consistent signal. The correlation analysis

between the polls and the sentiment ratio series showed that the sentiment

series are able to capture broad trends in the survey data. Nevertheless, the

results showed great variation among different datasets. For example, while

a high correlation between the sentiment ratio series and the index of Pres-

idential Job Approval was observed, the correlation between the sentiment

series and the pre-electoral polls for the U.S. 2008 Presidential elections was

non-significant.

Opinion time series created from Twitter data were also explored in (Lo-

gunov and Panchenko, 2011). The authors sampled around 40, 000, 000 tweets
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in a period of 510 days using the Twitter streaming API. The sentiment eval-

uation of the tweets was conducted according to four emotion states: happy,

sad, very happy, and very sad. A number of emoticons was mapped to each

emotion state, assuming that a tweet with one of these emoticons will be asso-

ciated with the corresponding emotion state. In this manner, emotion-oriented

time series were calculated according to the proportion of tweets associated to

each emotion state over the total number of messages in a day. The resulting

time series were analysed focusing on the study of seasonal and volatility pat-

terns. The experimental results indicated the presence of significant weekly

seasonality factors and also the presence of conditional heteroskedasticity (or

volatility) in the time series.

2.5.2 Predictions using Social Media

As stated in (Yu and Kak, 2012), not all topics or subjects are well suited for

making predictions from social media. First of all, the topic must be related

to a human event, which means that social media cannot be used to predict

events whose development is independent of human actions (e.g., an eclipse

or an earthquake). Secondly, there are some topics in which it is considered

impolite to express opinions with a certain orientation. Therefore, the topics

need to be freely discussed by people in public, otherwise the content will be

biased. In the following, we present some work on predictions based on social

media.

Stock Market

Stock market prediction has been traditionally addressed through the random

walk theory and the Efficient Market Hypothesis (EMH). This approach states

that stock market prices reflect all publicly available information and adjust

rapidly to the arrival of new information. Moreover, due to the fact that the

arrival of information is unpredictable, stock prices follow a random walk pro-

cess and cannot be accurately predicted in the long term. However, there

is work on using social media data and opinion mining methods as a proxy

for predicting stock market prices. In (De Choudhury, Sundaram, John and

Seligmann, 2008) the communication dynamics in the blogosphere were stud-

ied, showing a considerable correlation between social data and stock market

activity. An SVM regressor was trained using contextual properties of commu-

nications for a particular company as features and the stock market movement
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of the company as target variable. Some of the features considered were: the

number of posts, the number of comments, the length and response time of

comments, among others. An accuracy of 78% was obtained for predicting the

magnitude of movement and 87% for the direction of movement. In (Bollen

et al., 2011), it was investigated whether public moods extracted from Twitter

data can be used to predict the stock market. Two methods were used to cre-

ate mood time series from a collection of 9, 853, 498 tweets from February 28 to

December 19th. The first method uses the OpinionFinder lexicon to create a

positive vs. negative daily time series, and the second one uses Google-Profile

of Mood States (GPOMS) to create a six-dimensional daily time series based

on the following mood states: Calm, Alert, Sure, Vital, Kind, and Happy. In

order to asses the ability of these time series to predict stock market changes,

they compared them with the Dow Jones Industrial Average (DJIA) using the

econometric technique of Granger causality analysis (Granger, 1969). The re-

sults indicate that prediction of the stock market can be significantly improved

when mood dimensions Calm and Happiness are considered. The other mood

dimensions were not predictive.

Movie Box-Office Revenue

“Movie box-office revenue”, is a concept used to describe how successful a

movie is. There are a number of works that use social media to predict movie

performance, e.g. (Asur and Huberman, 2010; Liu, Huang, An and Yu, 2007;

Mishne and Glance, 2006). According to (Yu and Kak, 2012), there are sev-

eral reasons why predicting movie box-office revenue is a good subject of

research. The first reason is the availability of large volumes of data about

movies and the easy access to them. The Internet Movie Database16 (IMDB)

provides box-office indicators such as the gross income of released movies.

Furthermore, social media users that post about a movie before its release

date are very likely to end up watching it. Therefore, there is a clear cor-

relation between social media and movie box-office. For example, in (Asur

and Huberman, 2010), authors found more than 100, 000 tweets for each mon-

itored movie. In that work, tweets were used to forecast box-office revenues

for movies using properties such as the rate at which tweets are created and

sentiment indicators. An Autoregressive Sentiment Aware model (ARSA) to

predict box office performance from blogs was proposed in (Liu et al., 2007).

The model assumes that each blog document is generated by a number of

16http://www.imdb.com/
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hidden sentiment factors which are estimated using the Expectation Maximi-

sation algorithm (EM). Then, movie box revenues are predicted by combining

an autoregressive model of past revenues with sentiment factors extracted

from blogs.

Politics

The result of political elections has been traditionally predicted through public

opinion surveys such as telephone surveys or polls. A limitation of polls is that

they are expensive and need to be conducted periodically in order to track

voting intentions over time. Due to this, predicting elections with social media

has become an active area of research.

According to (Gayo-Avello, 2013), there are essentially two approaches for

inferring election votes from Twitter data: 1) by counting tweets, and 2) by re-

lying on sentiment analysis. The rationale behind counting tweets is quite

simple: the larger the number of tweets mentioning the target candidate,

the larger the vote rate (Tumasjan, Sprenger, Sandner and Welpe, 2010). On

the other hand, approaches based on sentiment analysis rely on polarity lex-

icons (O’Connor et al., 2010) and supervised learning (Ceron, Curini, Iacus

and Porro, 2014) for calculated aggregated sentiment indexes about the can-

didates. Metaxas, Mustafaraj and Gayo-avello (2011) found that sentiment

analysis outperforms counting tweets for vote intention estimation.

There is no clear consensus about the predictive performance of election

predictions based on social media and opinion mining. For example, Tumas-

jan et al. (2010) argue that the predictive power of this approach is “close

to traditional election polls”. In (Ceron et al., 2014) results were worse than

traditional polls in terms of Mean Average Precision (MAE) but still reason-

able. In (Gayo-Avello, 2011), it is stated that this predictive performance is

greatly exaggerated. Furthermore, there are cases in which different social

media predictions for the same event give conflicting results. While the au-

thors of (Tumasjan et al., 2010) claim that German elections of 2009 could

have been predicted using Twitter, the opposite is stated in (Jungherr, Jurgens

and Schoen, 2011).

2.6 Discussion

In this chapter, we provided a broad review of the field of sentiment analysis.

Several methods for polarity classification were described as well as methods
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for polarity lexicon induction. We provided new evidence concerning the label

sparsity and sentiment-drift problems in sentiment analysis. We also studied

the properties of popular lexical resources and showed real-world applications

of sentiment analysis of social media, such as such stock market prediction and

the prediction of political elections.

Considering methods for polarity classification of documents, sentences, and

tweets, we observed how lexical knowledge can aid this task, especially when

labelled data is scarce. Moreover, we observed that information about the

sentiment of messages can be very useful for inducing the polarity of words.

This suggests the existence of a sentiment-interdependence relation between

words and documents. We hypothesise that given the short length of tweets,

this interdependence is statistically more significant in tweets than in other

types of documents and we will exploit it in this thesis for both polarity lexicon

induction and message-level polarity classification tasks. The interdependence

relation is described by the following two statements:

1. The polarity of words is determined by the polarity of the tweets in which

they occur.

2. The polarity of tweets is determined by the polarity of their words.

The first lexicon induction method in this thesis, described in Chapter 3,

which exploits word sentiment associations, is based on the first part of the

relation, as it relies on automatically labelled tweets for performing the induc-

tion of a Twitter-specific opinion lexicon.

The tweet-centroid model we propose for both lexicon induction and distant

supervision in Chapters 4 and 5 is a unified representation that allows the

bidirectional transfer of sentiment classifiers between words and tweets. The

main benefit of this approach is that it only requires labelled data in one of the

two domains (words or messages) for transferring sentiment knowledge into

the other one. Moreover, the model is capable of performing the induction

of a polarity lexicon from unlabelled tweets based on a seed lexicon. This

is a crucial property of the model because it means that is can be used for

building domain-specific lexicons in domains where emoticons are rarely used

to express both positive and negative sentiment, such as politics.

Finally, the ASA method proposed in Chapter 6 is also grounded in the inter-

dependence relation, as it exploits prior lexical knowledge and unlabelled

data for creating synthetic polarity data by sampling and averaging multiple
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tweets without requiring any labelled tweets. ASA works on the whole mes-

sage rather than being entity oriented as the method in (Zhang et al., 2011).

Moreover, ASA can be used for creating training data of any size and distri-

bution of labels and hence may be useful for dealing with the class imbalance

problem reported in (Li et al., 2011).
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Chapter 3

Word-sentiment Associations for
Lexicon Induction

In this chapter, we propose a method for opinion lexicon induction for the

language used in Twitter. It applies supervised learning using word-level sen-

timent associations. Taking SentiWordNet (Baccianella et al., 2010) as inspi-

ration, each word in our expanded lexicon has a probability distribution, de-

scribing how positive, negative, and neutral it is. Additionally, all the entries of

the lexicon are associated with a corresponding part-of-speech tag. Estimat-

ing the sentiment distribution of POS-tagged words is useful for the following

reasons:

1. A word can present certain levels of intensity (Thelwall et al., 2012) for a

specific sentiment category, e.g., the word awesome is more positive than

the word adequate. The estimated probabilities can be used to represent

these levels of intensity. These probabilities provide a probabilistic in-

terpretation of the underlying sentiment intensities conveyed by a word

and can be used as prior knowledge in Bayesian models for sentiment

inference (Lin and He, 2009). In contrast, scores obtained by unsuper-

vised methods such as point-wise-mutual information semantic orienta-

tion (PMI-SO) (Turney, 2002) lack a probabilistic interpretation.

2. The neutrality score provided by the lexicon is useful for discarding non-

opinion words in text-level polarity classification tasks. This can easily be

done by discarding words classified as neutral. Note that unsupervised

lexicon expansion techniques such as PMI-SO (Turney, 2002) provide a

single numerical score for each word. Therefore, there would be a need

to empirically establish a threshold on this score for neutrality detection.

3. Homographs, which are words that share the same spelling but have dif-

ferent meanings, should have different lexicon entries for each different
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meaning. By using POS-tagged words, homographs with different POS-

tags will be disambiguated (Wilks and Stevenson, 1998). For instance,

the word fine will receive different sentiment scores when used as an ad-

jective (e.g., I’m fine thanks) and as a common noun (e.g., I got a parking

fine because I displayed the ticket upside down).

This is not the first work exploring these properties for lexicon expansion.

Sentiment intensities were described with probabilities in (Baccianella et al.,

2010), and the disambiguation of the sentiment of words based on POS tags

was studied in (Taboada et al., 2011). However, this is the first time that these

properties are explored for the informal language used in Twitter.

Our expanded lexicon is built by training a word-level sentiment classifier

for the words occurring in a corpus of polarity-annotated tweets. The train-

ing words are labelled using a seed lexicon of positive, negative, and neutral

words. This lexicon is taken from the union of four different hand-made lexi-

cons after discarding all polarity clashes from the intersection. The expanded

words are obtained after deploying the trained classifier on the remaining un-

labelled words from the corpus of tweets that are not included in the seed

lexicon.

All the words from the polarity-annotated corpus of tweets are represented

by features that capture morphological and sentiment information of the word

in its context. The morphological information is captured by including the

POS tag of the word as a nominal attribute, and the sentiment information is

captured by calculating association values between the word and the polarity

labels of the tweets in which it occurs.

We calculate two types of word-level sentiment associations: PMI-SO (Tur-

ney, 2002), which is based on the point-wise mutual information (PMI) be-

tween a word and tweet-level polarity classes, and stochastic gradient descent

semantic orientation (SGD-SO), which is based on incrementally learning a lin-

ear association between words and the sentiment of the tweets in which they

occur.

To avoid the high costs of manually annotating tweets into polarity classes

for calculating the word-level sentiment associations, we rely on two heuristics

for automatically obtaining polarity-annotated tweets: the emoticon-annotation

approach, introduced in Chapter 1, and model transfer. In the first approach,

only tweets with positive or negative emoticons are considered and labelled

according to the polarity indicated by the emoticon. The main drawbacks of

this approach is that the removal of tweets without emoticons may cause a

60



3.1 Proposed Method

loss of valuable words that do not co-occur with emoticons, and that there are

domains in which emoticons are rarely used to express positive or negative

opinions.

To overcome these limitations, we pursue a model transfer approach by

training a probabilistic message-level classifier from a corpus of emoticon-

annotated tweets and using it to label a target corpus of unlabelled tweets

with a probability distribution of positive and negative sentiment. Note that

the model transfer produces soft sentiment labels, in contrast to the hard la-

bels provided by emoticons. We study how to compute our word-level sen-

timent association attributes from tweets annotated with both hard and soft

labels.

We test our word-level sentiment classification approach on words obtained

from different collections of automatically labelled tweets. The results indicate

that our supervised framework outperforms using PMI-SO by itself when the

detection of neutral words is considered. We also evaluate the usefulness of

the expanded lexicon for classifying entire tweets into polarity classes, show-

ing significant improvement in performance compared to the original lexicon.

This chapter is organised as follows. In Section 3.1, we describe the pro-

posed method in detail. In Section 3.2, we present the experiments we con-

ducted to evaluate the proposed approach and discuss results. The main find-

ings are discussed in Section 3.3.

3.1 Proposed Method

In this section we describe the proposed method for opinion lexicon expansion

from automatically annotated tweets. The proposed process is illustrated in

Figure 3.1, and can be summarised in the following steps:

1. Collect tweets from the target domain and the time period for which the

lexicon needs to be expanded.

2. If the target collection has a significant number of positive and negative

emoticons, label it using the emoticon-based annotation approach. Other-

wise, collect tweets with positive and negative emoticons from a general

domain and use it to label the target collection with the model transfer

approach discusses below.

3. Tag all the words from the target collection using a part-of-speech tagger.

4. Calculate word-level features for all tagged words.
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5. Label these words with a sentiment that matches an existing hand-made

polarity lexicon.

6. Train a word-level classifier using the word-level features and the word

labels from the seed lexicon.

7. Use the trained classifier to estimate the polarity distribution of the re-

maining unlabelled words.

word PMI-m SGD-m POS label

happy 1.8 1.1 adj pos

sad -1.1 -1.6 adj neg

lol 2.1 1.7 inter ?

calculate 
features

label 
words

train 
classifier

happy pos

sad neg

chair neutral

Seed lex

lol inter pos

grrrr inter neg

book noun neutral

Expanded lex

classify 
words

good times 0.8 0.2

bad day 0.1 0.9
im happy

im sad

Emoticon-annotated
Tweets

Soft-annotated Tweets

transfer 
model

Figure 3.1: Twitter-lexicon induction process. The bird represents the Weka machine
learning software.

The key parts of the methodology are described in the following subsections.

The mechanisms studied to automatically create collections of labelled tweets

are described in Section 3.1.1. The proposed word-level attributes are de-

scribed in Section 3.1.2. The seed lexicon used to label the training words is

described in Section 3.1.3.

3.1.1 Automatically-annotated Tweets

The proposed method for lexicon induction requires a collection of tweets with

two properties: 1) the tweets must be labelled according to positive and neg-

ative polarity classes, and 2) they must be sorted in chronological order.
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The first property is necessary for calculating our word-level features based

on associations between words and the polarity of the tweets in which they

occur (Section 3.1.2).

The second property is also necessary for calculating our word-level fea-

tures, because they exploit how the associations between words and tweet-

level polarities evolve over time.

The limitation of depending on polarity-annotated tweets is that the pro-

cess of annotating tweets into polarity classes is labor-intensive and time-

consuming. We tackle this problem by employing two automatic heuristics for

data annotation: emoticon-based annotation and model transfer annotation.

Emoticon-based Annotation

In the emoticon-based annotation approach, tweets exhibiting positive :) and

negative :( emoticons are labelled according to the emoticon’s polarity (Go

et al., 2009). Afterwards, the emoticon used to label the tweet is removed from

the content. The emoticon-based labels are denoted by the letter y, and are

assumed to be in {+1,−1}, corresponding to positively and negatively labelled

tweets, respectively.

In the same way as in (Go et al., 2009), the attribute space is reduced by

replacing sequences of letters occurring more than two times in a row with

two occurrences of them (e.g., huuungry is reduced to huungry, loooove to

loove), and replacing user mentions and URLs with the generic tokens “USER”

and “URL”, respectively.

We consider two collections of tweets covering multiple topics for building

our datasets: The Stanford Sentiment corpus (STS) (Go et al., 2009), and The

Edinburgh corpus (ED) (Petrović et al., 2010). These collections were gathered

from two Twitter APIs: the search API1, which allows the submission of queries

composed of key terms, and the streaming API2, from which a real-time sample

of public posts can be retrieved.

The STS corpus is an emoticon-annotated collection created by periodically

sending queries :) and :( to the Twitter search API between April 6th 2009

to June 25th 2009. The ED corpus is a general purpose collection of 97 mil-

lion unlabelled tweets in multiple languages. It was collected with the Twitter

streaming API between November 11th 2009 and February 1st 2010. We ap-

plied the emoticon-based annotation approach to the tweets written in English

1https://dev.twitter.com/rest/public/search
2https://dev.twitter.com/streaming/overview
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from this collection. We refer to this emoticon-annotated collection as ED.EM.

The number of tweets for each polarity class in the two emoticon-annotated

corpora is given in Table 3.1. We can observe that when using the streaming

API (ED), positive emoticons occur much more frequently than negative ones.

ED.EM STS
Positive 1, 813, 705 800, 000
Negative 324, 917 800, 000
Total 2, 138, 622 1, 600, 000

Table 3.1: Emoticon-annotated datasets.

As was discussed in Chapter 1, the shortcoming of the emoticon-annotation

approach is that it discards a large amount of potentially valuable information

and is useless in domains where emoticons are infrequently used to express

sentiment.

Model Transfer Annotation

The model transfer approach enables the extraction of opinion words from

any collection of tweets. It tackles the problems of the emoticon-annotation

approach by employing a self-training approach. The idea is to train a proba-

bilistic message-level classifier from a source corpus Cs of emoticon-annotated

tweets and then use it to classify a target-corpus of unlabelled data Ct. We use

an L2-regularised logistic regression model with unigrams as attributes for

training the classifier and labelling the target collection with soft labels. The

soft labels of a tweet d ∈ Ct are denoted as pos(d) and neg(d), and represent

a probability distribution of positive and negative sentiment (i.e., 1− pos(d) =

neg(d)).

An important difference between the model transfer and emoticon-annotation

approach is the nature of the sentiment labels they produce. The emoticon-

based annotation approach produces hard labels y ∈ {+1,−1}; the model

transfer produces soft ones pos(d), neg(d) ∈ [0, 1].

The soft labels can easily be converted into hard ones by impossing a thresh-

old λ and discarding tweets for which the classifier is not confident enough in

its prediction:

64



3.1 Proposed Method

y(d) =


1 if pos(d) ≥ λ

−1 if neg(d) ≥ λ

0 otherwise

(3.1)

The tweets for which y(d) = 0 are then discarded. It is worth pointing out

that the removal of these tweets may lead to the loss of valuable data, and

that λ is a tuning parameter that needs to be adjusted with possible values

between 0.5 and 1. An alternative approach is to use the soft labels directly.

We will study strategies for extracting word-level attributes for both hard and

soft labels in Section 3.1.2.

It is noteworthy to mention that in contrast to the emoticon-annotated source

corpus, which is intentionally biased towards positive and negative tweets,

the target collection may contain a substantial amount of neutral data or even

tweets with mixed positive and negative sentiment. It is unclear how a classi-

fier trained to discriminate between positive and negative tweets will behave

when deployed on tweets that have a different sentiment class such as neutral

or mixed. This might be a shortcoming of the model transfer approach. How-

ever, it is plausible that neutral tweets or tweets with mixed sentiment will be

located close to the decision boundary of the classifier trained from positive

and negative emoticons. Therefore, we can expect that the soft labels obtained

with logistic regression for these types of tweets will have similar probabili-

ties for both positive and negative classes and will be discarded when setting

a sufficiently high value of λ.

The data we use for our model transfer experiments is obtained using the

STS corpus as the source collection, and a sample of 10 million tweets from ED

as the target collection. The classifier we use is an L2-regularised logistic re-

gression model with the regularisation parameter C set to 1, generated using

LIBLINEAR3. We refer to this corpus of tweets annotated with soft labels as

ED.SL. The average values for the positive and negative soft labels in ED.SL

are 0.64 and 0.36 respectively. We also convert this soft-annotated corpus

into multiple hard-annotated datasets using different thresholds values. We

refer to these collections as ED.Tα, where α is the value of the threshold. The

number of positive and negative tweets in the resulting datasets is shown in

Table 3.2. Note that the higher the value of α, the more tweets are discarded.

3http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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Dataset ED.T06 ED.T07 ED.T08 ED.T09
Positive 6, 279, 007 5, 164, 387 3, 761, 683 2, 030, 418
Negative 2, 182, 249 1, 609, 195 1, 090, 086 586, 441
Total 8, 461, 256 6, 773, 582 4, 851, 769 2, 616, 859

Table 3.2: Model transfer datasets with different threshold values.

3.1.2 Word-level Features

In this subsection, we provide a detailed description of the word-level features

used for classifying words from a corpus of polarity-annotated tweets into pos-

itive, negative, and neutral classes.

We preprocess the given corpus before calculating the features. All the

tweets are lowercased, tokenised and POS-tagged. We use the TweetNLP

library (Gimpel, Schneider, O’Connor, Das, Mills, Eisenstein, Heilman, Yo-

gatama, Flanigan and Smith, 2011), which provides a tokeniser and a tagger

specifically for the language used in Twitter. We prepend a POS-tag prefix to

each word in order to differentiate homographs exhibiting different POS-tags.

The first feature is a nominal attribute corresponding to the POS tag of the

word in its context. This feature provides morphological information of the

word. There is empirical evidence that subjective and objective texts have

different distributions of POS tags (Pak and Paroubek, 2010). According to

(Zhou et al., 2014), non-neutral words are more likely to exhibit the following

POS tags in Twitter: noun, adjective, verb, adverb, abbreviation, emoticon

and interjection. These findings suggest that POS tags may provide useful

information for discriminating between neutral and non-neutral words.

The remaining features aim to capture the association between the POS-

tagged word and sentiment. We sort the tweets from the collection chrono-

logically and create two semantic orientation time series for each word: the

SGD-SO series, and the PMI-SO series. These time series are designed to cap-

ture the evolution of the relationship between a word and the sentiment that

it expresses. The way in which these series are calculated varies according

to the nature of the sentiment labels of the tweets. As was described in Sec-

tion 3.1.1, there are two types of message-level sentiment labels we can obtain

from our methods for annotating tweets automatically: hard labels (positive or

negative), and soft labels (pos(d), neg(d)). The hard labels are obtained when

using the emoticon-annotation approach and the soft ones from the transfer

model one. It is also possible to obtain hard-labels from the model transfer
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approach by applying a threshold parameter λ.

Features Calculated from Hard Labels

The first semantic orientation time series is calculated by incrementally train-

ing a linear model using stochastic gradient descent (SGD-SO). The weights of

this model correspond to POS-tagged words and are updated in an incremen-

tal fashion. For the hard-labelled data (y ∈ {+1,−1}), we incrementally train

a support vector machine (Zhang, 2004) by optimising the hinge loss function

with an L2 penalty and a learning rate equal to 0.1:

λ

2
||w||2 +

∑
[1− y(xw + b)]+. (3.2)

The variables w, b, and λ correspond to the weight vector, the bias, and the

regularisation parameter, respectively. The regularisation parameter was set

to 0.0001. The model’s weights determine how strongly the presence of a word

influences the prediction of negative and positive classes (Bifet and Frank,

2010). The SGD-SO time series is created by applying this learning process to

a collection of labelled tweets and storing the word’s coefficients in different

time windows. We use time windows of 1, 000 examples.

The second time series corresponds to the accumulated PMI semantic orien-

tation (PMI-SO), which is the difference between the PMI of the word with a

positive sentiment and the PMI of the word with a negative sentiment (Turney,

2002):

PMI-SO(w) = PMI(w,pos)− PMI(w,neg) (3.3)

= log2

(
Pr(w, pos)

Pr(w)× Pr(pos)

)
− log2

(
Pr(w, neg)

Pr(w)× Pr(neg)

)
= log2

(
Pr(w, pos)× Pr(neg)

Pr(pos)× Pr(w, neg)

)
Let count be a function that counts the number of times that a word or a

sentiment label has been observed up to and including a certain time period.

For hard-labelled tweets, we calculate the PMI-SO score for each POS-tagged

word according to the following expression:

PMI-SO(w) = log2

(
count(w ∧ y = 1)× count(y = −1)

count(y = 1)× count(w ∧ y = −1)

)
(3.4)

We use time windows of 1, 000 examples and the Laplace correction to avoid
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the zero-frequency problem.

Feature Description
mean The mean of the time series.
trunc.mean The truncated mean of the time series.
median The median of the time series.
last.element The last observation of the time series.
sd The standard deviation of the time series.
iqr The inter-quartile range.
sg The fraction of times the time series changes its sign.
sg.diff The sg value applied to the differenced time series (Xt −Xt−1).

Table 3.3: Time series features.

We use the time series to extract features that are used to train our world-

level polarity classifier. These features summarise location and dispersion

properties of the time series, and are listed in Table 3.3. The location-oriented

features mean, trunc.mean and median measure the central tendency of the

time series. The dispersion oriented features sd, iqr, sg, and sg.diff measure

the variability of the time series. The feature last.element corresponds to the

last value observed in the time series. This attribute would be equivalent to

the traditional PMI semantic orientation measure for the PMI-SO time series

calculated from hard labels.

Features Calculated from Soft Labels

In the scenario of tweets with soft labels, the PMI-SO and SGD-SO time series

are calculated in a different way.

For the SGD-SO time series we use an L2 regularised squared loss function.

Let z be a real value that corresponds to the log odds of the positive and neg-

ative sentiment labels of a given tweet: z = log2(
pos(d)
neg(d)

), and let the variables

w, b, and λ be analogous to the ones from the hinge loss. The squared loss

function is defined as follows:

λ

2
||w||2 +

∑
(z − (xw + b))2. (3.5)

The PMI-SO time series is calculated using soft counts. Let C be the set

of tweets seen so far and C(w) be the tweets from C in which the word w is
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observed. Then, the soft version of PMI-SO is calculated as follows:

PMI-SO′(w) = log2

(∑
d∈C(w) pos(d)×

∑
d∈C neg(d)∑

d∈C pos(d)×
∑

d∈C(w) neg(d)

)
(3.6)

We calculate the same features (Table 3.3) from the soft versions of the SGD-

SO and PMI-SO time series as the ones calculated from their corresponding

hard versions.

3.1.3 Ground-Truth Word Polarities

In this subsection, we describe the seed lexicon used to label the training

words for our word sentiment classifier. In order to create an expanded lex-

icon similar to SentiWordNet, we require a seed lexicon of words manually

labelled according to mutually exclusive positive, negative, and neutral sen-

timent classes. We create it by fusing the following manually created lexical

resources that were described in Chapter 2:

• MPQA Subjectivity Lexicon: We consider positive, negative, and neutral

words from this lexicon.

• Bing Liu: We consider positive and negative entries from this lexicon.

• AFINN : We tagged words with negative and positive scores from this

lexicon to negative and positive classes respectively.

• NRC emotion Lexicon: We consider positive, negative, and neutral words

from this lexicon, and the words associated with both positive and nega-

tive categories are discarded. The neutral words correspond to the words

that are not associated with any emotion or polarity category.

As discussed in Chapter 2, different lexical resources may assign different

categories to the same word. In order to create mutually exclusive polarity

classes and to reduce the noise in our training data, we discard all words for

which a polarity clash is observed. A polarity clash is a word that receives two

or more different tags in the union of lexicons.

The number of words for the different polarity classes in the different lexi-

cons is displayed in Table 3.4.

The total number of clashes is 1074. We observe that this number is higher

than the one observed in Chapter 2 when the agreement between lexicons

was analysed. In that experiment, manually-annotated lexicons exhibited high
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Positive Negative Neutral
AFINN 564 964 0
Bing Liu 2003 4782 0
MPQA 2295 4148 424
NRC-Emo 2312 3324 7714
Seed Lexicon 3730 6368 7088

Table 3.4: Lexicon Statistics.

agreement for positive and negative classes. However, we observe here that

including a neutral label produces a substantial increase in the number of

clashes. This high number of clashes found among different hand-made lexi-

cons indicates two things: 1) Different human annotators can disagree when

tagging a word to polarity classes, and 2) there are words that can belong to

more than one sentiment class. Hence, we can say that word-level polarity

classification is a hard and subjective problem.

3.2 Evaluation

In this section, we conduct an experimental evaluation of the proposed model

for Twitter opinion lexicon expansion. The evaluation is divided into four parts.

In the first part we conduct an exploratory analysis of word-level features cal-

culated from real Twitter data. In the second part we evaluate the word-level

classifiers. In the third part we perform lexicon expansion using the trained

classifiers and study the expanded resources. In the fourth part we conduct

an extrinsic evaluation by using the expanded words for message-level polarity

classification of tweets.

3.2.1 Exploratory Analysis

In this subsection, we explore the proposed time series described in Sec-

tion 3.1.2 and the features extracted from them with the aim of observing

how these variables correlate with the sentiment of words. The time series

are calculated for the most frequent 10, 000 POS-tagged words found in each

of our two emoticon-annotated datasets (STS and ED.EM) using MOA4, a data

stream mining framework.

Figure 3.2 shows the resulting semantic orientation time series SGD-SO and

PMI-SO for a sample of words in the ED.EM dataset. We can observe that the

4http://moa.cs.waikato.ac.nz/
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Figure 3.2: Word-level time series.

positive and neutral words congrats and connected exhibit greater PMI-SO

and SGD-SO scores than the negative words worried and upset. This suggests

a correspondence between time series values and word polarities. We can

also see that the PMI-SO time series are much more stable than the SGD-

SO ones. We believe that PMI-SO is more stable than SGD-SO because, as

shown in Equation 3.4, PMI-SO treats each word independently from all other

words given the sentiment class. In contrast, SGD-SO scores are updated

according to the SGD-SO learning rule, which comes from the sub-gradient of

Equation 3.2. In this rule, the coefficients are updated every time the learning

SVM misclassifies an example from the stream of emoticon-labelled tweets

(y(xw + b) < 1). Therefore, the change of the weight of a particular word

depends both on the sentiment label and the co-occurring words within the

tweets from the training collection.

To create training and test data for learning a word classifier, all POS-tagged

words matching the seed lexicon, and, thus, their corresponding time series,

are labelled according to the lexicon’s polarities. It is interesting to consider
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how frequently positive, negative, and neutral words occur in a collection of

tweets. The number of words labelled as positive, negative, and neutral for

both the ED.EM and STS dataset is given in Table 3.5. As shown in the ta-

ble, neutral words are the most frequent words in both datasets. Moreover,

positive words are more frequent than negative ones.

ED.EM STS
Positive 1027 1023
Negative 806 985
Neutral 1814 1912
Total 3647 3920

Table 3.5: Word-level polarity classification datasets.

As the lexicon’s entries are not POS-tagged, we assume that all possible POS

tags of a word have the same polarity. However, this assumption can introduce

noise in the training data. For example, the word ill, which is labelled as

negative by the lexicon, will be labelled as negative for two different POS-tags:

adjective, and nominal+verbal contraction. This word is very likely to express

a negative sentiment when used as an adjective, but it is unlikely to express a

negative sentiment when it refers, in a misspelled way, to the contraction I’ll.

A simple outlier removal technique to deal with this problem will be discussed

in Section 3.2.3.

Once our time series are created, we extract from them the word-level fea-

tures described in Section 3.1.2. The feature values obtained for some exam-

ple words are given in Table 3.6. We can see that each entry has a POS-tag

prefix. As expected, features from the same time series related to measures of

central tendency (e.g., mean and median) exhibit similar values.

A scatterplot between attributes sgd-so.mean and pmi-so.mean for the la-

belled words from the STS corpus is shown in Figure 3.3. From the figure we

can observe that the two variables are highly correlated. The correlation is

0.858 and 0.877 for the ED.EM and STS corpora respectively. Positive, neg-

ative, and neutral words are depicted with different colours. We can observe

that negative words tend to show low values of sgd-so.mean and pmi-so.mean,

and positive words tend to show the opposite. Neutral words are more spread

out and hard to distinguish. This pattern can also be clearly seen in the box-

plots shown in Figure 3.4.

The boxplots show that the three classes of words exhibit different sta-

tistical properties in both sgd-so.mean and pmi-so.mean. The medians of
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Attribute !-congrats A-connected A-upset V-worried
sgd-so.last 1.4 0.4 -2.6 -1.2
sgd-so.mean 0.9 0.4 -2.1 -1.2
sgd-so.trunc.mean 0.9 0.4 -2.1 -1.2
sgd-so.median 0.9 0.4 -2.1 -1.2
sgd-so.sd 0.3 0.3 0.4 0.4
sgd-so.sg 0.0 0.0 0.0 0.0
sgd-so.sg.diff 0.0 0.0 0.1 0.0
sgd-so.iqr 0.2 0.3 0.5 0.6
pmi-so.last 2.8 -0.1 -3.3 -1.8
pmi-so.mean 2.9 0.1 -3.2 -1.9
pmi-so.trunc.mean 2.9 0.3 -3.3 -1.9
pmi-so.median 2.9 0.3 -3.2 -1.9
pmi-so.sd 0.2 0.8 0.1 0.1
pmi-so.sg 0.0 0.0 0.0 0.0
pmi-so.sg.diff 0.2 0.4 0.4 0.4
pmi-so.iqr 0.1 0.6 0.1 0.1
pmi-so.tag interjection adjective adjective verb
label positive neutral negative negative

Table 3.6: Word-level feature example.

the classes show an accurate correspondence with the word’s polarity, i.e.,

median(pos) > median(neu) > median(neg). It is worth pointing out that neg-

ative words exhibit the largest spread and that most of the boxplots show a

substantial number of outliers. These outliers, which exhibit very high abso-

lute values of sgd-so.mean and pmi-so.mean, correspond to words that occur

with much greater frequency in tweets with a specific positive or negative

polarity than in tweets with the opposite polarity. We also observe outliers

exhibiting values of sgd-so.mean and pmi-so.mean with the opposite direction

as the word’s polarity. We attribute them to the following factors:

• Words that were wrongly labelled in the seed lexicon.

• Words that are frequently occurring in tweets with the opposite polarity

by chance.

• Words whose polarity conveyed in the corpus of tweets is the different as

the polarity provided by the lexicon.

3.2.2 Word-level Classification

In this subsection, we focus on the word-level classification problem. With the

aim of gaining a better understanding of the problem, we study three word-

level classification problems:
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Figure 3.3: PMI-SO vs SGD-SO scatterplot.

1. Neutrality: Classify words as neutral (objective) or non-neutral (subjec-

tive). We label positive and negative words as non-neutral for this task.

2. PosNeg: Classify words as positive or negative. We remove all neutral

words for this task.

3. PosNegNeu: Classify words as positive, negative or neutral. This is the

primary classification problem we aim to solve.

In the first part of this subsection, we study word-level sentiment classifi-

cation using tweets annotated with the emoticon-based annotation approach.

Afterwards, we will study the same problem using tweets annotated with the

model transfer approach.

Word Classification from Emoticon-annotated Tweets

We first consider the information provided by each feature with respect to

the three classification tasks described above. This is done by calculating

the information gain of each feature using the R package FSelector5. This

score is normally used for decision tree learning and measures the reduction

of entropy within each class after performing the best split induced by the

5http://cran.r-project.org/web/packages/FSelector/
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Figure 3.4: PMI-SO and SGD-SO Boxplots.

feature. The information gain obtained for the different attributes in relation

to the three classification tasks is shown in Table 3.7. The attributes achieving

the highest information gain per task are marked in bold.

We can observe that variables measuring the location of the PMI-SO and

SGD-SO time series tend to be more informative than those measuring dis-

persion. Moreover, the information gain of these variables is much higher for

PosNeg than for Neutrality. SGD-SO and PMI-SO are competitive measures

for neutrality, but PMI-SO is better for PosNeg. An interesting insight is that

features that measure the central tendency of the time series tend to be more

informative than those giving the last value of the time series, especially for

SGD-SO. These measures smooth the fluctuations of the SGD-SO time series.

We can see that the feature sgd-so.mean is the best attribute for neutrality

classification in both datasets. We can also see that POS tags are useful for

neutrality detection, but useless for PosNeg. Therefore, we can conclude that

positive and negative words have a similar distribution of POS tags.

We trained supervised classifiers for the three different classification prob-
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Chapter 3 Word-sentiment Associations for Lexicon Induction

Dataset ED.EM STS
Task Neutrality PosNeg PosNegNeu Neutrality PosNeg PosNegNeu
pos-tag 0.062 0.017 0.071 0.068 0.016 0.076
sgd-so.mean 0.082 0.233 0.200 0.104 0.276 0.246
sgd-so.trunc.mean 0.079 0.237 0.201 0.104 0.276 0.242
sgd-so.median 0.075 0.233 0.193 0.097 0.275 0.239
sgd-so.last 0.057 0.177 0.155 0.086 0.258 0.221
sgd-so.sd 0.020 0.038 0.034 0.030 0.030 0.052
sgd-so.sg 0.029 0.000 0.030 0.049 0.017 0.062
sgd-so.sg.diff 0.000 0.000 0.008 0.005 0.000 0.000
sgd-so.iqr 0.018 0.012 0.019 0.015 0.014 0.017
pmi-so.mean 0.079 0.283 0.219 0.081 0.301 0.232
pmi-so.trunc.mean 0.077 0.284 0.215 0.079 0.300 0.229
pmi-so.median 0.077 0.281 0.215 0.076 0.300 0.228
pmi-so.last 0.069 0.279 0.211 0.084 0.300 0.240
pmi-so.sd 0.000 0.015 0.008 0.000 0.012 0.007
pmi-so.sg 0.013 0.216 0.126 0.019 0.239 0.142
pmi-so.sg.diff 0.000 0.012 0.009 0.000 0.000 0.000
pmi-so.iqr 0.000 0.000 0.000 0.000 0.008 0.000

Table 3.7: Information gain values. Best result per column is given in bold.

lems using both emoticon-annotated datasets, STS and ED.EM. The classifi-

cation experiments were performed using the WEKA6 machine learning envi-

ronment. We studied the following learning algorithms in preliminary exper-

iments: RBF SVM, logistic regression, C4.5, and random forest. As the RBF

SVM produced the best performance among the different methods, we used

this method in our classification experiments, with a nested grid search proce-

dure for parameter tuning, where internal cross-validation is used to find the

C and σ parameters of the RBF SVM.

The evaluation was done using stratified 10 times 10-fold-cross-validation

and different subsets of attributes are compared. All the methods are com-

pared with the baseline of using the last value of PMI-SO, based on the cor-

rected resampled paired t -student test with an α level of 0.05 (Nadeau and

Bengio, 2003). We used the following subsets of attributes: 1) PMI-SO : In-

cludes only the feature pmi-so.last. This is the baseline and is equivalent to

the standard PMI semantic orientation measure, with the decision boundaries

provided by the SVM. 2) ALL : Includes all the features. 3) SGD-SO.TS+POS :

Includes all the features from the SGD-SO time series and the POS tag. 4)

PMI-SO.TS+POS : Includes all the features from the PMI-SO time series and

the POS tag. 5) PMI-SO+POS : Includes the feature pmi-so.last and the POS

tag.

We use two evaluation measures that are appropriate for imbalanced datasets:

6http://www.cs.waikato.ac.nz/ml/weka/
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the weighted area under the ROC curves (AUCs) and the kappa statistic. ROC

curves are insensitive to class balance because they include all true positive

and false positive rates that are observed (Fawcett, 2006). The kappa statistic

is also insensitive to class imbalance because it normalises the classification

accuracy by the imbalance of the classes in the data.

The classification results for the four different subsets of attributes in the

two datasets are presented in Table 3.8. The symbols + and − correspond

to statistically significant improvements and degradations with respect to the

baseline, respectively.

We can observe a much lower performance in Neutrality detection than in

PosNeg. This indicates that the detection of neutral Twitter words is much

harder than distinguishing between positive and negative words. The perfor-

mance on both datasets tends to be similar. However, the results for STS are

better than for ED.EM. This suggests that a balanced collection of positively

and negatively labelled tweets is more suitable for lexicon expansion. Another

result is that the combination of all features leads to a significant improvement

over the baseline for Neutrality and PosNegNeu classification. In the PosNeg

classification task, we can see that the baseline is very strong. This suggests

that PMI-SO is very good for discriminating between positive and negative

words, but not strong enough when neutral words are included. Regarding

PMI-SO and SGD-SO time series, we can conclude that they are competitive

for Neutrality detection. However, PMI-SO-based features are better for the

PosNeg and PosNegNeu tasks.

AUC

Dataset PMI-SO ALL SGD-SO.TS+POS PMI-SO.TS+POS PMI-SO+POS
ED.EM-Neutrality 0.62 ± 0.02 0.65 ± 0.02 + 0.65 ± 0.02 + 0.65 ± 0.02 + 0.64 ± 0.02 +
ED.EM-PosNeg 0.74 ± 0.03 0.75 ± 0.03 0.71 ± 0.03 - 0.74 ± 0.03 0.73 ± 0.03
ED.EM-PosNegNeu 0.62 ± 0.02 0.65 ± 0.02 + 0.64 ± 0.02 0.65 ± 0.02 + 0.64 ± 0.02 +
STS-Neutrality 0.63 ± 0.02 0.67 ± 0.02 + 0.66 ± 0.02 + 0.66 ± 0.02 + 0.66 ± 0.02 +
STS-PosNeg 0.77 ± 0.03 0.77 ± 0.03 0.75 ± 0.03 - 0.77 ± 0.03 0.77 ± 0.03
STS-PosNegNeu 0.64 ± 0.02 0.66 ± 0.01 + 0.65 ± 0.02 + 0.66 ± 0.02 + 0.66 ± 0.02 +

Kappa

Dataset PMI-SO ALL SGD-SO.TS+POS PMI-SO.TS+POS PMI-SO+POS
ED.EM-Neutrality 0.23 ± 0.04 0.3 ± 0.04 + 0.29 ± 0.05 + 0.3 ± 0.04 + 0.28 ± 0.04 +
ED.EM-PosNeg 0.48 ± 0.06 0.5 ± 0.06 0.44 ± 0.05 0.49 ± 0.06 0.48 ± 0.06
ED.EM-PosNegNeu 0.28 ± 0.04 0.33 ± 0.04 + 0.3 ± 0.04 0.33 ± 0.04 + 0.32 ± 0.04 +
STS-Neutrality 0.26 ± 0.04 0.33 ± 0.04 + 0.31 ± 0.05 + 0.32 ± 0.04 + 0.32 ± 0.04 +
STS-PosNeg 0.54 ± 0.06 0.54 ± 0.06 0.51 ± 0.06 - 0.53 ± 0.06 0.54 ± 0.05
STS-PosNegNeu 0.31 ± 0.04 0.35 ± 0.03 + 0.34 ± 0.03 + 0.34 ± 0.03 + 0.34 ± 0.03 +

Table 3.8: World-level classification performance with emoticon-based annotation.
Best result per row is given in bold.
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Word Classification from Model Transfer Annotated Tweets

We also study the classification of words from the data annotated with the

model transfer approach. As described in Section 3.1.1, our soft-annotated

collection ED.SL is built by taking STS as the source corpus and a sample of

10 million tweets from ED as the target one. We study two different mecha-

nisms for extracting word-level attributes from the soft-annotated collection

of tweets. In the first one, we convert the message-level soft labels into hard

ones by imposing different thresholds (λ) and we calculate the same attributes

used for the emoticon-annotated data. Taking steps of 0.1, we vary the value

of λ from 0.6 to 0.9 and obtain four hard-annotated datasets. In the second

approach, we calculate the features directly from the soft labels by relying on

the squared loss (Equation 3.5) for building the SGD-SO time series and on

partial counts (Equation 3.6) for building the PMI-SO time series.

In this way, we obtain four hard-annotated datasets and one soft-annotated

dataset. We calculate the corresponding word-level attributes (see Section

3.1.2) for the 10, 000 most frequent POS-disambiguated words from each of

the five datasets. As the most frequent words matching the seed lexicon are

not necessarily the same among the different datasets, we take the intersec-

tion of them in order to make them comparable. We trained RBF SVMs on

the different collections over the intersection of the labelled words using two

different feature spaces. In the first one, we use all the attributes, and in the

second one, we discard the POS attribute, which is the only feature that is in-

dependent of the threshold or the message-level label. The 3-class word-level

polarity classification accuracies7 and kappa values obtained by the different

RBF SVMs are shown in Table 3.9.

ALL NO POS
Dataset Accuracy Kappa Accuracy Kappa
ED.T06 62.82 ± 1.78 0.34 ± 0.03 61.29 ± 2.02 0.31 ± 0.04
ED.T07 62.77 ± 1.78 0.34 ± 0.03 61.60 ± 1.98 0.32 ± 0.04
ED.T08 62.43 ± 1.83 0.33 ± 0.04 61.03 ± 1.83 0.30 ± 0.03
ED.T09 62.46 ± 1.82 0.33 ± 0.03 60.20 ± 1.89 0.29 ± 0.04
Soft Labels 63.05 ± 1.81 0.34 ± 0.03 60.92 ± 2.10 0.30 ± 0.04

Table 3.9: Word classification performance using model transfer. Best result per col-
umn is given in bold.

7We are not considering AUC in this experiment because all datasets exhibit very similar
values for this measure.
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The results indicate that the different thresholds and the soft labels produce

similar results. Indeed, there are no statistically significant differences among

them. However, it is worth mentioning that the soft labels produce a better

accuracy than the hard ones when all the attributes are included. Regarding

the kappa values, we observe that they become more distinguishable when

the POS label is discarded. As ED.T07 achieved the best kappa values for both

attribute spaces, we select 0.7 as the best value of λ.

Next, we study the performance of the different feature subsets in data ob-

tained with the model transfer approach. We repeat the previous word-level

classification experiments conducted on the emoticon-annotated datasets on

the soft-annotated collection (ED.SL) and the best hard-annotated collection

(ED.T07). The same four different subsets of attributes are compared and we

use again the last value of the PMI-SO series as the baseline. The results are

exhibited in Table 3.10.

AUC

Dataset PMI-SO ALL SGD-SO.TS+POS PMI-SO.TS+POS PMI-SO+POS
ED.T07-Neutrality 0.62 ± 0.02 0.65 ± 0.02 + 0.65 ± 0.02 + 0.64 ± 0.02 0.64 ± 0.02
ED.T07-PosNeg 0.77 ± 0.03 0.76 ± 0.02 0.74 ± 0.03 - 0.78 ± 0.03 0.77 ± 0.03
ED.T07-PosNegNeu 0.62 ± 0.02 0.65 ± 0.02 + 0.65 ± 0.02 + 0.64 ± 0.02 0.64 ± 0.01
ED.SL-Neutrality 0.62 ± 0.02 0.65 ± 0.02 + 0.65 ± 0.02 + 0.64 ± 0.02 + 0.64 ± 0.02 +
ED.SL-PosNeg 0.78 ± 0.03 0.78 ± 0.03 0.74 ± 0.03 - 0.78 ± 0.03 0.78 ± 0.03
ED.SL-PosNegNeu 0.63 ± 0.02 0.65 ± 0.02 + 0.64 ± 0.02 0.64 ± 0.02 0.64 ± 0.02

Kappa

Dataset PMI-SO ALL SGD-SO.TS+POS PMI-SO.TS+POS PMI-SO+POS
ED.T07-Neutrality 0.23 ± 0.03 0.29 ± 0.04 + 0.31 ± 0.04 + 0.27 ± 0.04 0.28 ± 0.04
ED.T07-PosNeg 0.56 ± 0.06 0.54 ± 0.05 0.49 ± 0.06 - 0.56 ± 0.05 0.56 ± 0.05
ED.T07-PosNegNeu 0.27 ± 0.03 0.34 ± 0.04 + 0.33 ± 0.03 + 0.31 ± 0.05 0.31 ± 0.03
ED.SL-Neutrality 0.24 ± 0.05 0.3 ± 0.04 + 0.29 ± 0.04 + 0.28 ± 0.04 + 0.28 ± 0.04 +
ED.SL-PosNeg 0.56 ± 0.06 0.57 ± 0.05 0.49 ± 0.05 - 0.57 ± 0.05 0.57 ± 0.06
ED.SL-PosNegNeu 0.3 ± 0.04 0.33 ± 0.04 + 0.31 ± 0.03 0.32 ± 0.04 0.32 ± 0.04

Table 3.10: World-level classification performance using model transfer. Best result
per row is given in bold.

Similarly to the results for the emoticon-annotated experiments shown in

Table 3.8, the results are better for PosNeg than for Neutrality, and the combi-

nation of all the attributes produces a significant improvement over semantic

orientation for 3-class PosNegNeu detection. Indeed, the full attribute space

is the only representation that outperforms the baseline for both collections

in both AUC and kappa evaluation measures. Another difference between

these results and the previous ones is observed for the detection of neutral-

ity. Both PMI-SO and SGD-SO achieved very similar results in the previous

experiments, but SGD-SO produces better results here.
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We can see that the way in which our different features complement each

other becomes clearer when they are calculated from tweets annotated with

the model transfer approach.

3.2.3 Lexicon expansion

The ultimate goal of the polarity classification of words is to produce a Twitter-

oriented opinion lexicon emulating the properties of SentiWordet, i.e., a lex-

icon of POS-tagged disambiguated entries with their corresponding distribu-

tion for positive, negative, and neutral classes. To do this, we fit logistic re-

gression models to the outputs of the support vector machines trained for the

PosNegNeu problem, using all the attributes. The resulting models are then

used to classify the remaining unlabelled words. This process is performed for

the STS, ED.EM, ED.T07, and ED.SL datasets.

A sample from the expanded word list produced with the STS collection is

given in Table 3.11. We can see that each entry has the following attributes:

the word, the POS-tag, the sentiment label that corresponds to the class with

maximum probability, and the distribution. We inspected the expanded lex-

icon and observed that the estimated probabilities are intuitively plausible.

However, there are some words for which the estimated distribution is ques-

tionable, such as the word same in Table 3.11. We can also observe that words

such as close and laugh, which have more than one POS-tag, receive disam-

biguated sentiment distributions. We observe that these disambiguations are

intuitively plausible as well.

word POS label negative neutral positive
alrighty interjection positive 0.021 0.087 0.892
anniversary common.noun neutral 0.074 0.586 0.339
boooooo interjection negative 0.984 0.013 0.003
close adjective positive 0.352 0.267 0.381
close verb neutral 0.353 0.511 0.136
french adjective neutral 0.357 0.358 0.285
handsome adjective positive 0.007 0.026 0.968
laugh common.noun neutral 0.09 0.504 0.406
laugh verb positive 0.057 0.214 0.729
lmaoo interjection positive 0.19 0.338 0.472
relaxing verb positive 0.064 0.244 0.692
saddest adjective negative 0.998 0.002 0
same adjective negative 0.604 0.195 0.201
tear common.noun negative 0.833 0.124 0.044
wikipedia proper.noun neutral 0.102 0.644 0.254

Table 3.11: Example list of words in expanded lexicon.

The provided probabilities can also be used to explore the sentiment inten-
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sities of words. In Figure 3.5, we visualise the expanded lexicon intensities

of words classified as positive and negative through word clouds. The sizes

of the words are proportional to the log odds ratios log2(
P (pos)
P (neg)

) and log2(
P (neg)
P (pos)

)

for positive and negative words, respectively.
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Figure 3.5: Word clouds of positive and negative words using log odds proportions.

3.2.4 Extrinsic Evaluation of the Expanded Lexicons

In this subsection we study the usefulness of our expanded lexicons in an ex-

trinsic task: polarity classification of tweets. This involves categorising entire

tweets into a positive or negative sentiment class. The goal of this experiment

is to show how the expanded lexicons can be used to improve the message-

level classification performance achieved by using the manually annotated

seed lexicon and to compare the created resources with two other existing

resources that have been widely used for sentiment analysis: SentiWordNet

and SentiStrength (Thelwall et al., 2012).

As was previously discussed in Chapter 2, SentiWordNet is a resource in

which each WordNet synset is assigned a probability distribution of positive,

negative, and neutral classes. Synsets in WordNet are sets of word senses

with equivalent meaning. A word with multiple senses or meanings is in-

cluded in multiple WordNet synsets and, in turn, is associated with multiple

sentiment distributions in SentiWordNet. In WordNet, all the senses of a word

are ranked according to their frequency of use or popularity. As suggested
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in the sample code provided by the SentiWordNet webpage8, we calculate a

weighted average of the sentiment distributions of the synsets in which a POS-

disambiguated word occurs in order to obtain a single sentiment distribution

for it. The weights correspond to the reciprocal ranks of the senses in order

to give higher weights to the most popular senses of a word.

SentiStrength, on the other hand, is a lexicon-based method that returns a

positive and negative score for a given tweet.

The evaluation is performed on three collections of tweets that were manu-

ally assigned to the positive and negative class. The first collection is 6Human-

Coded9, which was used to evaluate SentiStrength in the paper that proposed

this method. In this dataset, tweets are scored according to positive and nega-

tive numerical scores. We use the difference of these scores to create polarity

classes and discard messages where it is equal to zero. The other datasets are

Sanders10, and SemEval11. The number of positive and negative tweets per

corpus is given in Table 3.12.

Positive Negative Total
6HumanCoded 1340 949 2289
Sanders 570 654 1224
SemEval 5232 2067 7299

Table 3.12: Message-level polarity classification datasets.

We train different logistic regression models on the labelled collections of

tweets, based on simple features calculated from the seed lexicon, SentiWord-

Net, SentiStrength, and from the four expanded lexicons: STS, ED.EM, ED.SL,

and ED.T07. For each resource we compute a positive and a negative feature.

From the seed lexicon we count the number of positive and negative words

matching the content of the tweet. In order to use the POS-disambiguated

lexicons such as SentiWordNet and our expanded lexicons, we tag the tweet’s

words according to POS classes. Then, we calculate the corresponding posi-

tive feature by adding the positive probabilities of POS-tagged words labelled

as positive within the tweet’s content. Likewise, the corresponding negative

feature is calculated in an analogous way from the negative probabilities. In

the expanded lexicons, words are discarded as non-opinion words whenever

8http://sentiwordnet.isti.cnr.it/code/SentiWordNetDemoCode.java
9http://sentistrength.wlv.ac.uk/documentation/6humanCodedDataSets.zip

10http://www.sananalytics.com/lab/twitter-sentiment/
11http://www.cs.york.ac.uk/semeval-2013/task2/
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the class with the highest probability corresponds to the neutral one. For Sen-

tiStrength we use the positive and negative scores returned by the method for

the target tweet.

We study eight different setups based on these attributes. The first one is

the seed lexicon baseline which includes only the two attributes calculated

from the seed lexicon. The second one corresponds to the SentiWordNet base-

line and includes the positive and negative features calculated from it. The

third one corresponds to the SentiStrength baseline, which includes the posi-

tive and negative scores returned by that method. The next four setups, STS,

ED.EM, ED.SL, and ED.707, include the pair of features provided by each cor-

responding expanded lexicon together with the two features from the seed

lexicon. This is done because the expanded lexicons do not contain the words

from the seed lexicons that were used to train them. Finally, the last setup,

ENS is an ensemble of the four expanded lexicons and the seed lexicon by

including the ten features associated with these resources.

In the same way as in the word-level classification task, we use the weighted

AUC and the kappa coefficient as evaluation measures, estimated using 10-

times 10-fold cross-validation, and we compare the different setups with the

three baselines using corrected paired t-tests. The classification results ob-

tained for the different setups are shown in Table 3.13. The statistical signifi-

cance tests of each setup with respect to each of the three baselines (seed lex-

icon, SentiWordNet, and SentiStrength) are indicated by a sequence of three

symbols. Improvements are denoted by a plus (+), degradations by a minus (-

), and cases where no statistical significant difference is observed by an equal

sign (=).

The results indicate that the expanded lexicons produce meaningful im-

provements in performance over the seed lexicon and over SentiWordNet

on the different datasets. We believe that the reason why SentiWordNet is

not achieving good results is its lack of informal English expressions. Sen-

tiStrength, on the other hand, is a strong baseline for Twitter sentiment anal-

ysis. This is because of two reasons: 1) it is based on a lexicon formed by

both formal and informal English words, and 2) it includes linguistic rules for

handling negations and intensifiers. We observe that most of our expanded

lexicons are at least competitive with SentiStrength according to the statisti-

cal tests. Moreover, there are several cases in Sanders and SemEval in which

the expanded lexicons achieve statistically significant improvements over Sen-

tiStrength, especially for AUC. This is noteworthy, considering that the fea-
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AUC

Dataset 6HumanCoded Sanders SemEval
Seed.Lex 0.77 ± 0.03 = + - 0.77 ± 0.04 = + = 0.77 ± 0.02 = + -
SW 0.74 ± 0.03 - = - 0.7 ± 0.05 - = - 0.76 ± 0.02 = = -
SS 0.81 ± 0.02 + + = 0.78 ± 0.03 = + = 0.81 ± 0.02 + + =
STS 0.82 ± 0.02 + + = 0.84 ± 0.04 + + + 0.83 ± 0.02 + + +
ED.EM 0.82 ± 0.03 + + = 0.83 ± 0.04 + + + 0.81 ± 0.02 + + =
ED.SL 0.81 ± 0.02 + + = 0.83 ± 0.04 + + + 0.81 ± 0.02 + + =
ED.T07 0.81 ± 0.03 + + = 0.83 ± 0.04 + + + 0.82 ± 0.02 + + +
ENS 0.83 ± 0.02 + + = 0.84 ± 0.04 + + + 0.83 ± 0.02 + + +

Kappa

Dataset 6HumanCoded Sanders SemEval
Seed Lex 0.4 ± 0.06 = + - 0.42 ± 0.08 = + = 0.35 ± 0.04 = + -
SW 0.32 ± 0.06 - = - 0.26 ± 0.1 - = - 0.3 ± 0.04 - = -
SS 0.52 ± 0.05 + + = 0.45 ± 0.06 = + = 0.38 ± 0.03 + + =
STS 0.47 ± 0.06 + + = 0.55 ± 0.08 + + + 0.38 ± 0.04 + + =
ED.EM 0.47 ± 0.05 + + - 0.54 ± 0.07 + + + 0.35 ± 0.04 = + -
ED.SL 0.46 ± 0.05 + + - 0.54 ± 0.08 + + + 0.36 ± 0.04 = + =
ED.T07 0.47 ± 0.05 + + - 0.53 ± 0.08 + + + 0.4 ± 0.04 + + =
ENS 0.49 ± 0.05 + + = 0.54 ± 0.07 + + + 0.42 ± 0.04 + + +

Table 3.13: Message-level polarity classification performance. Best result per col-
umn is given in bold.

tures we calculate from the expanded lexicons are based on simple additions

of prior sentiment scores in contrast to the linguistic rules that SentiStrength

uses for aggregating its lexicon’s words. Most of the cases where the ex-

panded lexicons are statistically significantly worse than SentiStrength occur

for the kappa measure in 6HumanCoded.

Regarding the lexicons built from emoticon-annotated data, the performance

of STS is slightly better than that of ED.EM. This pattern was also observed

in the word-level classification performance shown in Table 3.8. This suggests

that the two different ways of evaluating the lexicon expansion, one at the

word level and the other at the message level, are consistent with each other.

Regarding the lexicons built from the model transfer annotation approach, the

results are competitive with the ones achieved with the emoticon-annotated

data. Moreover, the lexicon built from hard transfered labels appears to be

slightly better than the one built using soft labels, especially in the kappa

value for the SemEval dataset.

We can also observe, in the majority of the cases, that the best performance
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is obtained by the ensemble of expanded lexicons. Therefore, we can conclude

that lexicons expanded using either data from different collections or by ap-

plying different annotation approaches can be combined to improve message-

level classification of tweets.

As was discussed in the previous section, the seed lexicon does not pro-

vide POS-tagged entries. Therefore, words exhibiting multiple POS-tags were

labelled with the same polarity in the word-level training data. We also men-

tioned that this assumption can make the classifier learn spurious patterns

and erroneously classify unlabelled words. For example the word ill together

with the POS tag nominal+verb receives a negative label. However, when ill

is used with the part-of-speech tag that refers to the contraction of the pro-

noun I and the verb will, it should be labelled as neutral instead. Moreover,

by inspection we realised that ill is the only labelled entry with the POS tag

nominal+verb. Considering that the POS tag is also used as a feature in the

word-level classifiers, we observed that most of the words exhibiting the POS

tag nominal+verb were classified into the negative class in all expanded lex-

icons. Common sense suggests that these words should be expanded to the

neutral class.

In order to avoid learning this type of spurious pattern, we re-trained the

word-level classifiers using an outlier removal technique. More specifically, we

clean out the instances from the word-level training data that are misclassified

by a classifier evaluated using 10-fold cross-validation on this data, again using

an RBF SVM. Afterwards, we retrain the word-level classifiers on the cleaned

data and create new versions of all the expanded lexicons. We inspected the

new versions of the expanded lexicons observing that words exhibiting the

nominal+verb POS tag are classified to the neutral class as common sense

suggests. This shows that removing outliers is a successful way of tackling

ambiguities such as the one produced by the word ill in the seed lexicon.

The message-level classification results obtained by the expanded lexicons

with outlier removal are shown in Table 3.14. The improvements or degrada-

tions over the previous expanded lexicons are denoted with symbols ↑ and ↓
respectively. In relation to 6HumanCoded, we observe that the AUC metric is

improved for almost all the different setups, and that all the setups outperform

the previous kappa results. It is noteworthy that the kappa value achieved by

the ensemble of lexicons in this dataset exceeds the previous value by 0.03.

On the other hand, we see degradations in the kappa values for Sanders. Re-

garding SemEval, we see a degradation with STS, a substantial improvement
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AUC

Dataset 6HumanCoded Sanders SemEval
STS 0.82 ± 0.03 + + = 0.82 ± 0.04 + + + ↓ 0.82 ± 0.02 + + + ↓
ED.EM 0.84 ± 0.02 + + + ↑ 0.83 ± 0.04 + + + 0.83 ± 0.02 + + + ↑
ED.SL 0.82 ± 0.03 + + = ↑ 0.83 ± 0.04 + + + 0.82 ± 0.02 + + = ↑
ED.T07 0.81 ± 0.03 + + = 0.83 ± 0.04 + + + 0.82 ± 0.02 + + +
ENS 0.84 ± 0.02 + + + ↑ 0.84 ± 0.04 + + + 0.84 ± 0.02 + + + ↑

Kappa

Dataset 6HumanCoded Sanders SemEval
STS 0.48 ± 0.05 + + = ↑ 0.52 ± 0.08 + + = ↓ 0.36 ± 0.03 = + = ↓
ED.EM 0.51 ± 0.05 + + = ↑ 0.53 ± 0.08 + + + ↓ 0.41 ± 0.03 + + = ↑
ED.SL 0.48 ± 0.05 + + = ↑ 0.53 ± 0.08 + + + ↓ 0.37 ± 0.04 = + = ↑
ED.T07 0.48 ± 0.06 + + = ↑ 0.53 ± 0.08 + + + 0.39 ± 0.04 + + = ↓
ENS 0.52 ± 0.05 + + = ↑ 0.53 ± 0.07 + + + ↓ 0.42 ± 0.03 + + +

Table 3.14: Message-level polarity classification performance with outlier removal.
Best result per columns is given in bold.

with ED.EM, and a minor improvement with ED.SL. Another interesting result

is that the removal of outliers creates lexicons that are always equal or better

than SentiStrength according to the statistical tests.

The fact that the removal of outliers can also produce degradations in the

quality of the expanded lexicons, as in the case of the Sanders dataset, in-

dicates that words that are useful for learning the word-level classifier have

been removed. This suggests that the problem of reducing the noise in the

seed lexicon is hard to address in an automatic fashion. A simple but labour-

intensive approach to overcome this problem would be to manually clean the

labelled POS-disambiguated words.

3.3 Discussion

In this chapter, we have presented a method for opinion lexicon expansion

in the context of tweets. The method exploits information from three types

of information sources, all of which are relatively cheap to obtain: emoticon-

annotated tweets, unlabelled tweets, and hand-annotated lexicons. The method

creates a lexical resource with disambiguated POS entries and a probability

distribution for positive, negative, and neutral classes. To the best of our

knowledge, our method is the first approach for creating a Twitter opinion

lexicon with these characteristics. Considering that these characteristics are

very similar to those of SentiWordNet, a well-known publicly available lexical
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resource, we believe that several sentiment analysis methods that are based

on SentiWordNet can be easily adapted to Twitter by relying on our expanded

lexicons12. Moreover, our expanded resources have shown to outperform the

tweet-level polarity classification performance achieved by SentiWordNet and

SentiStrength in most cases.

The word-level experimental results show that the supervised fusion of POS

tags, SGD-SO, and PMI-SO, produces a significant improvement for three-

dimensional word-level polarity classification compared to using PMI semantic

orientation alone. We can also conclude that attributes describing the central

location of SGD-SO and PMI-SO time series tend to be more informative than

the last values of the series because they smooth the temporal fluctuations in

the sentiment pattern of a word.

There are many domains, such as politics, in which emoticons are not fre-

quently used to express positive and negative opinions. This is an important

limitation of previous approaches for domain-specific lexicon expansion that

are based solely on emoticon-annotated tweets. The proposed model trans-

fer annotation approach tackles this problem and enables inference of opinion

words from any collection of unlabelled tweets.

We have also proposed a novel way for computing word-level attributes from

data with soft labels. The proposed soft version of PMI-SO based on partial

counts can be used for expanding lexicons from any collection of tweets in

an unsupervised fashion. In contrast to a threshold approach, soft PMI-SO is

parameter free and avoids discarding tweets that may contain valuable words.

12The expanded lexicons and the source code used to generate them are available for down-
load at http://www.cs.waikato.ac.nz/ml/sa/lex.html#kbs16.
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Chapter 4

Distributional Models for Affective
Lexicon Induction

The Distributional Hypothesis (Harris, 1954) states that words occurring in

similar contexts tend to have similar meanings. This hypothesis is exploited in

this chapter for inducing polarity and affective words from Twitter corpora. To

this end, words are represented by distributional vectors. Distributional vec-

tors (Turney and Pantel, 2010) are used for representing lexical items such as

words according to the context in which they occur in a corpus of documents

or tweets. In other words, distributional models infer the meaning of a word

from the distribution of the words that surround it.

The main benefit of distributional models over the approach presented in

Chapter 3, is that distributional models do not depend on tweets labelled by

sentiment. We experiment with two distributional approaches:

1. The tweet centroid model, which creates word-vectors from tweet-level

attributes (e.g., unigrams and Brown clusters) by averaging all the tweets

in which the target word appears.

2. Word embeddings (Mikolov et al., 2013), which are low-dimensional con-

tinuous dense word vectors trained from document corpora.

This chapter is divided into two major parts: 1) a first part focused on

classifying words into positive, negative, and neutral polarity classes using

the tweet centroid model, and 2) an extended study aimed at producing a

more fine-grained word-level categorisation based on multi-label emotion cat-

egories, such as anger, fear, surprise, and joy. We explore different types of

word-level features derived from tweet centroids and word embeddings using

multi-label classification techniques. We close the chapter with a discussion

of the main findings of the study.
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4.1 Polarity Lexicon Induction with Tweet Centroids

The rationale of using distributional models for polarity lexicon induction is

that words exhibiting a certain polarity are more likely to be used in contexts

expressing the same polarity than in contexts exhibiting a different one. Thus,

the context of a word can determine its polarity. The tweet centroid model

we propose in this chapter is a distributional representation that exploits the

short nature of tweets by treating them as the whole contexts of words. This is

done by representing words as the centroids of the tweets in which they occur

within a corpus of tweets.

Suppose we have a corpus C formed by n tweets t1, . . . , tn, where each tweet

t is a sequence of words. Let V be the vocabulary formed by the m different

words w1, . . . , wm found in C. The tweets from C are represented by feature

vectors x of dimensionality k. Note that different NLP features can be used to

form the tweet vectors. A standard approach is to use the vector space model

or bag-of-words model introduced in Chapter 1.

For each word w, we define the word-tweet setM(w) as the set of tweets in

which w is observed:

M(w) = {m : w ∈ m} (4.1)

We define the tweet centroid word vector −→w as the centroid of all tweet

vectors in which w is used. In other words, −→w is a k -dimensional vector in

which each dimension wj is calculated as follows:

wj =
∑

t∈M(w)

x
(t)
j

|M(w)|
(4.2)

Another interpretation of the tweet centroid model is that words are treated

as the expected tweet in which they might occur.

In this study, we build the word vectors from two different tweet-level rep-

resentation. The first is a high-dimensional bag-of-words model using unigram

frequencies as dimension values. The second is a semantic representation

based on word clusters. We employ the Brown clustering algorithm (Brown

et al., 1992) to tag a tweet with a sequence of word clusters and create cluster

frequency vectors. These models are formalised as follows.

The tweet-level unigram model represents each tweet t as an m-dimensional

vector
−→
tb where each dimension j has a numerical value fj(t) that corresponds

to the frequency of the word wj within the sequence of words in t. We define

the unigram word-level vector
−→
wb as as the centroid of all tweet vectors in
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which w is used.

However, because unigram models tend to produce high-dimensional sparse

vectors, we also study another word vector representation with lower dimen-

sionality that is based on the interaction of word clusters.

Let c be a clustering function that maps the m words from V to a partition S
containing l classes, with l� m. In our experiments, this function is trained in

an unsupervised fashion from a corpus of tweets using the Brown clustering

algorithm (Brown et al., 1992), which produces hierarchical clusters by max-

imising the mutual information of bigrams. These clusters have shown to be

useful for tagging tweets according to part-of-speech classes (Gimpel et al.,

2011).

We tag the word sequences of the tweets from C with the clustering function

c. Afterwards, we create a new tweet-level vector
−→
tc of l dimensions based

on the frequency of occurrence of a cluster s in the tweet. The cluster-based

word vectors −→wc are calculated analogously to the bag-of-words vectors in the

first approach. We take the centroids of the cluster-based vectors
−→
tc from the

tweets ofW(w), producing l-dimensional vectors for each word.

We will classify each word from a corpus of unlabelled tweets into one of

three different polarity classes: positive, negative, or neutral. As in the previ-

ous chapter, we use a seed lexicon to label a sample of the words and train a

classifier on the labelled instances represented by tweet centroids. The fitted

model is then used to classify the remaining unlabelled words. A diagram of

how the tweet centroid vectors are used for lexicon induction using supervised

learning is shown in Figure 4.1.

4.1.1 Tweet Centroids and Word-Context Matrices

The tweet centroid model can be viewed as a variation of the word-context

matrix1 for semantic modelling (Turney and Pantel, 2010). This matrix has

dimensionality |V|×|V|, and each cell (i, j) is a co-occurrence based association

value between a target word wi and a context word wj calculated from a corpus

of documents. Contexts can be represented by entire documents. However,

considering that common documents (e.g., Wikipedia articles, news articles,

scientific papers) are formed by multiple sentences and discuss different ideas,

it is normally preferred to use windows of words surrounding the target one.

The window length is a user-specified parameter that is usually between 1 and

8 words on both the left and the right sides of the target word, i.e., the total

1This matrix is also named word-word or term-term matrix.
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Figure 4.1: Twitter-lexicon induction with tweet centroids. The bird represents the
Weka machine learning software.

contexts are usually between 3 and 17 words. Whereas shorter windows are

likely to capture syntactic information, longer windows are more useful for

representing meaning (Jurafsky and Martin, 2008). The associations between

words can be calculated using different approaches such as: co-occurrence

counts, positive point-wise mutual information (PPMI), and the significance

values of a paired t-test. The most common of those according to (Jurafsky

and Martin, 2008) is PPMI. This measure is a filtered version of the traditional

PMI measure in which negative values are set to zero:

PPMI(wi, wj) = max(0,PMI(wi, wj)) (4.3)

PMI alone calculates the log of the probability of both words occurring to-

gether over the probability of both words being independent. Negative PMI

values suggest that the two words co-occur less often than chance. These esti-

mates are unreliable unless the counts are calculated from very large corpora

(Jurafsky and Martin, 2008). PPMI corrects this problem by replacing negative

values by zero.

The tweet centroid model calculated with unigrams is analogous to a word-
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context matrix in which whole tweets are used as context and where the word-

word associations are calculated using co-occurrence counts normalised by

the numbers of contexts where the target word appears. Considering that the

average number of words in a tweet is around 14 (Guo, Li, Ji and Diab, 2013),

using tweets as contexts is similar to using windows of 14 words when building

semantic vectors from longer documents.

A noteworthy property of the tweet centroid model is that it admits arbitrary

representations of contexts such as Brown clusters or other features capable

of capturing useful semantic information. Traditional word-context matrices

lack this property.

4.1.2 Evaluation

The evaluation of the tweet centroids model for lexicon induction is performed

in two parts: 1) an intrinsic evaluation, and 2) an extrinsic evaluation.

Intrinsic Evaluation

The tweets we use in our experiments are taken from the same collections

used in Chapter 3. We take a random sample of 2.5 million English tweets

from the Edinburgh corpus (ED) (Petrović et al., 2010), and we use the STS

emoticon-annotated corpus with the emoticons removed from the content2.

The ED corpus represents a realistic sample from a stream of tweets, whereas

STS was intentionally manipulated to over-represent subjective tweets.

We tokenise the tweets from both collections and create the vectors
−→
wb and

−→wc as described in Section 4.1. The clustering function c was taken from the

TweetNLP project3. This function was trained to produce 1000 different word

clusters from a collection of around 56 million tweets using the Brown cluster-

ing algorithm.

The two vectors
−→
wb,−→wc are used as attribute vectors to train a word-level

classifier for lexicon induction. To avoid learning spurious relationships from

infrequent words, vectors of words that occur in fewer than 10 tweets are

discarded (|W(w)| < 10). We also discard the dimensions from
−→
wb that corre-

spond to those infrequent words. Analogously, we remove all dimensions from
−→wc that are associated with clusters appearing in fewer than 10 tweets.

We label the words that match a seed lexicon into three sentiment cate-

gories: positive, negative, and neutral. The seed lexicon is the same as the

2Emoticons are not used as tweet-level sentiment labels in the current approach.
3http://www.ark.cs.cmu.edu/TweetNLP/
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one used in Chapter 3 after including a list of 87 positive and negative emoti-

cons. Note that emoticons are only present in the ED corpus.

The seed lexicon, after including the emoticon list, has 3769 positive, 6414

negative, and 7088 neutral words. The main properties of the ED and STS

datasets are summarised in Table 4.1.

Dataset STS ED
#tweets 1, 600, 000 2, 500, 000
#positive words 2, 015 2, 639
#negative words 2, 621 3, 642
#neutral words 3, 935 5, 085
#unlabelled words 36, 451 67, 692
#unigram attributes 45, 022 79, 058
#cluster-vector attributes 993 999

Table 4.1: Dataset properties.

We first study the problem of classifying words into positive and negative

classes. We train an L2-regularised logistic regression model with the regu-

larisation C parameter set to 1.0 using LibLINEAR. For performance estima-

tion, we apply 10 times 10-folds cross-validation on the positive and negative

labelled words from the two datasets. We compare three different instance

spaces: unigram vectors
−→
wb, Brown cluster vectors −→wc, and the concatena-

tion of both: [wb1, . . . , wbm, wc1, . . . , wck]. We compare classification accuracy

and the weighted area under the ROC curve (AUC) obtained by the different

instance spaces using a corrected resampled paired t -student test with an α

level of 0.05. Results are displayed in Table 4.2. Statistically significant im-

provements over the bag-of-words approach are denoted with the symbol +.

Accuracy

Dataset UNI CLUSTER CONCAT
STS 75.52 ± 1.81 77.2 ± 1.9 + 77.85 ± 1.94 +
ED 77.75 ± 1.54 77.62 ± 1.37 79.15 ± 1.39 +

AUC

Dataset UNI CLUSTER CONCAT
STS 0.83 ± 0.02 0.84 ± 0.02 + 0.85 ± 0.02 +
ED 0.85 ± 0.01 0.85 ± 0.01 0.86 ± 0.01 +

Table 4.2: Word-level 2-class polarity classification performance.

We can observe that the classification results are slightly better for ED than

for STS. The cluster-based representation is better than the unigram represen-

tation in STS. However, this pattern is not observed in ED. The concatenation

of both vector models produces significant improvements in accuracy and AUC

over the baseline in both datasets.

94



4.1 Polarity Lexicon Induction with Tweet Centroids

Accuracy

Dataset UNI CLUSTER CONCAT
STS 61.84 ± 1.46 64.42 ± 1.54 + 64.57 ± 1.44 +
ED 62.93 ± 1.31 64.5 ± 1.16 + 65.5 ± 1.19 +

AUC

Dataset UNI CLUSTER CONCAT
STS 0.77 ± 0.01 0.79 ± 0.01 + 0.79 ± 0.01 +
ED 0.78 ± 0.01 0.79 ± 0.01 + 0.8 ± 0.01 +

Table 4.3: Word-level three-class polarity classification performance.

In the next experiment, we include neutral words to train a 3-class classifier

capable of classifying words as positive, negative, or neutral. The classifica-

tion results are given in Table 4.3. We can see that the classification perfor-

mance is lower than in the previous experiment. The cluster-based vectors

are significantly better than the unigram vectors in both datasets. This sug-

gests that word clusters are especially helpful in distinguishing neutral and

non-neutral words. The concatenation of the two vectors achieves the best

performance among all the experiments.

We also conduct another intrinsic evaluation in which we compare the tweet

centroid model based on unigram features with a widely used distributional

representation for word semantics: positive point-wise mutual information

(PPMI). Additionally, we study how the size of the input corpus from which

the word vectors are drawn, affects the polarity classification of words.

The PPMI word vectors are taken from the rows of a word-context matrix

built from a corpus of tweets, in which tweets are used as contexts. Each cell

in the matrix corresponds to the PPMI between the target word wi and the

context word wj:

PPMI(wi, wj) = max

(
0, log2

(
Pr(wi ∧ wj)
Pr(wi)Pr(wj)

))
. (4.4)

Let count(wi) be the number of contexts (tweets in our case) where wi is

observed in a corpus of n tweets, and count(wi, wj) be the number of tweets

where words wi and wj co-occur. The probability of observing a word wi is

estimated as follows:

Pr(wi) =
count(wi)

n
, (4.5)

and the joint probability of words wi and wj is calculated as:

Pr(wi ∧ wj) =
count(wi, wj)

n
. (4.6)
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Hence, the PPMI score between two words is:

PPMI(wi, wj) = max

(
0, log2

(
count(wi, wj)× n

count(wi)× count(wj)

))
. (4.7)

We use Laplace smoothing to avoid zero counts. We train L2-regularised

logistic regression models on word vectors represented with tweet centroids

(using only unigrams) and PPMI. The word vectors are calculated from sam-

ples of the Edinburgh corpus ranging from 100, 000 to 3, 200, 000 tweets. In-

frequent words are discarded in the same way as in the previous experiment.

We study the performance of 2-class and 3-class word-level polarity classifi-

cation with 10-fold cross-validation according to three evaluation measures:

accuracy, AUC, and kappa. Additional variables we report are: the process-

ing time (in minutes) for building the word vectors, the number of attributes

of the word vectors, the average fraction of active attributes (attributes with

non-zero values), and the number of training instances for each classification

task. The results are shown in Table 4.4.

Tweet Centroids (UNI)
Tweets 100, 000 200, 000 400, 000 800, 000 1, 600, 000 3, 200, 000
Processing Time (Minutes) 0.463 0.965 1.973 4.167 8.302 16.373
Number of attributes 9077 14335 22132 35051 57838 100002
Fraction of active attributes 4.7% 3.9% 3.3% 2.8% 2.3% 1.8%
Train instances 2class 1801 2557 3455 4531 5658 6685
Accuracy 2class 73.792 75.675 74.877 76.650 78.226 78.235
Weighted AUC 2class 0.802 0.825 0.822 0.837 0.851 0.853
Kappa 2class 0.462 0.512 0.497 0.527 0.550 0.540
Train instances 3class 3541 4955 6550 8410 10334 12083
Accuracy 3class 57.583 60.686 60.351 61.332 62.735 63.436
Weighted AUC 3class 0.712 0.744 0.746 0.765 0.779 0.790
Kappa 3class 0.267 0.333 0.338 0.364 0.392 0.405

PPMI
Processing Time (Minutes) 0.472 0.975 1.958 4.107 8.132 16.764
Number of attributes 9077 14335 22132 35051 57838 100002
Fraction of active attributes 4.7% 3.9% 3.3% 2.8% 2.4% 1.8%
Train Instances 2class 1801 2557 3455 4531 5658 6685
Accuracy 2class 71.294 73.993 72.243 74.487 74.850 77.188
Weighted AUC 2class 0.790 0.808 0.800 0.815 0.820 0.835
Kappa 2class 0.418 0.479 0.443 0.484 0.483 0.522
Train Instances 3class 3541 4955 6550 8410 10334 12083
Accuracy 3class 51.624 52.654 53.420 54.792 54.838 57.039
Weighted AUC 3class 0.646 0.666 0.686 0.695 0.700 0.719
Kappa 3class 0.213 0.240 0.259 0.288 0.291 0.324

Table 4.4: Intrinsic Evaluation of tweet centroids and PPMI for lexicon induction.

From the table we can observe that the tweet centroids produce better dis-

tributional vectors than PPMI for 2-class and 3-class polarity classification ac-

cording to the three performance measures. We also observe that the size

of the corpus has a positive impact on the classification performance in the
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two types of word vectors. The processing time and the dimensionality of the

vectors increase when increasing the size of input corpus. The same is true

for words that match the seed lexicon used for training the classifiers. The

word vectors are very sparse in both distributional approaches, i.e., the aver-

age number of dimensions different from zero is less than the 5% of the total

number of attributes in all cases.

Extrinsic Evaluation

We use the three-class world-level classifiers trained using the concatenation

of the unigrams and word clusters to label the unlabelled words from STS and

from the 2.5 million instance sample of ED. A sample of the induced words

from the ED sample with the estimated probabilities for negative, neutral, and

positive classes is shown in Table 4.5.

word label negative neutral positive
#recession negative 0.603 0.355 0.042
#silicon_valley neutral 0.043 0.609 0.348
bestfriends positive 0.225 0.298 0.477
christamas positive 0.003 0.245 0.751
comercials negative 0.678 0.317 0.005
hhahaha positive 0.112 0.409 0.479
powerpoint neutral 0.068 0.802 0.13
psychotic negative 0.838 0.138 0.024
widows negative 0.464 0.261 0.275
yassss positive 0.396 0.08 0.524

Table 4.5: Example of induced words.

As an additional validation for the induced words, we study their usefulness

for classifying the overall polarity of Twitter messages. To do this, we com-

pare the classification performance obtained by a simple classifier that uses

attributes calculated from the seed lexicon, with the performance obtained by

a classifier with attributes derived from both the seed lexicon and the induced

words. This evaluation is analogous to the extrinsic evaluation conducted in

Chapter 3 and is done on the same three collections of tweets: 1) 6Human-

Coded, 2) Sanders, and 3) SemEval.

The baseline of this experiment is a logistic regression model trained using

the number of positive and negative words from the seed lexicon that are found

within the tweet’s content as attributes. For each expanded lexicon, we train a

logistic regression model using the baseline attributes together with a positive

and a negative score calculated as the sum of the corresponding probabilities

of words classified as positive or negative, respectively.
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Accuracy

Dataset Baseline STS ED
Sanders 73.25 ± 3.51 74.76 ± 4.21 76.58 ± 3.8 +
6HumanCoded 72.84 ± 2.57 75.08 ± 2.31 + 76.42 ± 2.34 +
SemEval 77.72 ± 1.24 78.97 ± 1.31 + 79.18 ± 1.22 +

AUC

Dataset Baseline STS ED
Sanders 0.78 ± 0.04 0.8 ± 0.04 + 0.83 ± 0.04 +
6HumanCoded 0.79 ± 0.03 0.82 ± 0.03 + 0.83 ± 0.02 +
SemEval 0.78 ± 0.02 0.82 ± 0.02 + 0.84 ± 0.02 +

Table 4.6: Message-level classification performance.

The classification results obtained for message-level classification in the

three datasets are shown in Table 4.6. We observe from the table that with the

exception of the accuracy obtained by the STS-based lexicon on the Sanders

dataset, the induced lexicons produce significant improvements over the base-

line. Furthermore, the lexicon induced from the ED corpus outperforms the

STS lexicon in accuracy and AUC score respectively. These results indicate

that collections of tweets manipulated to over-represent subjective tweets,

such as STS, are not necessarily better for lexicon induction than random col-

lections of tweets such as ED.

The AUC results obtained with the lexicon induced from ED are very similar

to the results obtained by the lexicons induced with the word-sentiment asso-

ciations from Chapter 3 (Table 3.13). It is interesting to observe that lexicons

built using word representations of different nature perform very similarly

when evaluated on the same task.

We also conduct an extrinsic evaluation of the lexicons built in the second

part of our intrinsic evaluation. The lexicons are built using classifiers trained

on tweet centroids using unigrams and on word vectors calculated with PPMI.

The word vectors are calculated from the same samples of ED as used in Ta-

ble 4.4. We report accuracy, AUC, and kappa, of logistic regression models

trained on labelled tweets from SemEval, Sanders, and 6HumanCoded. We

use the same lexicon-based attributes used in the previous experiment. The

results are given in Table 4.7.

We observe from the table that word centroids produce better lexicons than

PPMI in the extrinsic evaluation task. We observe mixed results in relation to

the size of the input corpus. While lexicons built from larger corpora perform

better in Sanders and 6HumanCoded, they perform worse in SemEval. We

believe that increasing the input corpus size can produce lexicons with noisy

information as discussed below.
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Tweet Centroids (UNI)
Tweets 100, 000 200, 000 400, 000 800, 000 1, 600, 000 3, 200, 000
Accuracy SemEval 79.066 79.066 78.888 78.586 78.709 78.764
Weighted AUC SemEval 0.827 0.825 0.828 0.830 0.825 0.827
Kappa SemEval 0.430 0.428 0.425 0.418 0.419 0.422
Accuracy Sanders 75.980 75.408 76.389 76.307 76.797 77.124
AUC Sanders 0.822 0.825 0.825 0.825 0.825 0.830
Kappa Sanders 0.518 0.507 0.526 0.524 0.534 0.540
Accuracy 6HumanCoded 75.186 74.705 74.924 74.487 75.273 75.841
AUC 6HumanCoded 0.822 0.822 0.823 0.818 0.824 0.828
Kappa 6HumanCoded 0.477 0.466 0.473 0.462 0.481 0.494

PPMI
Accuracy SemEval 77.161 77.257 77.339 77.394 77.463 77.504
Weighted AUC SemEval 0.790 0.787 0.786 0.785 0.788 0.787
Kappa SemEval 0.359 0.361 0.365 0.367 0.367 0.368
Accuracy Sanders 73.366 73.611 74.592 74.020 73.856 74.101
AUC Sanders 0.794 0.800 0.802 0.799 0.804 0.808
Kappa Sanders 0.466 0.470 0.490 0.478 0.475 0.479
Accuracy 6HumanCoded 73.526 72.608 73.526 72.870 72.783 73.569
AUC 6HumanCoded 0.800 0.798 0.798 0.793 0.795 0.799
Kappa 6HumanCoded 0.439 0.420 0.440 0.425 0.424 0.440

Table 4.7: Extrinsic Evaluation of TCM and PPMI for lexicon induction.

Suppose we have two lexicons Ls and Lb, built from the words occurring in

two collections of unlabelled tweets Cs and Cb, respectively, and where Cb is

much larger than Cs ( |Cb| � |Cs|). According to the heaps law (Manning et al.,

2008), the number of different words in a corpus increases in a logarithmic

fashion with the size of the corpus. Hence, Lb > Ls.
The vectors of the words that are included in both lexicons Ls ∩Lb are more

likely to have been built from more context in Lb than in Ls. Thus, these words

are probably better represented in Lb. However, the new words that are only

included in Lb will not necessarily contain enough context for being accurately

classified by polarity. This suggests that lexicons built from large collections

of tweets are prone to include many words with noisy information.

4.2 Inducing Word–Emotion Associations by
Multi-label Classification

Analysing the emotions expressed in Twitter has important applications in the

study of public opinion. Word-emotion association lexicons, which are lists of

terms annotated according to emotional categories, are widely used resources

for analysing emotions in textual passages. The NRC word-emotion associa-

tion lexicon (NRC-10)4 (Mohammad and Turney, 2013) is a well-known lexical

resource for emotion analysis created by crowdsourcing via Mechanical Turk.

4http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm
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It contains 14,182 distinct English words manually annotated according to ten

non-exclusive binary categories including the eight emotions from Plutchik’s

wheel of emotions (Plutchik, 2001): joy, sadness, anger, surprise, fear, dis-

gust, trust and anticipation; and two sentiment classes: positive and negative.

For example, the word achieved is mapped into the categories anticipation,

joy, trust, and positive, and the word exile is mapped into anger, fear, sad-

ness, and negative. There are 7,714 words that are not associated with any

affective category and can be considered neutral, such as powder and corn.

NRC-10 does not cover informal expressions commonly used in social media

such as hashtags, slang words and misspelled words, and consequently suffers

from limitations when analysing emotions from microblogging messages such

as tweets.

In this section, we study how to automatically expand NRC-10 with the

words found in a corpus of unlabelled tweets. The expansion is performed

using multi-label classification techniques. These techniques assign instances

to multiple non-exclusive classes such as the ones provided by NRC-10. We

represent words using different types of features derived from our proposed

tweet centroid model and low-dimensional embeddings.

The words from NRC-10 that occur in the corpus are labelled according

to the emotional categories provided by the lexicon. The feature vectors for

the words along with these affect labels are used for learning a word-level

multi-label affect classifier. As some categories from NRC-10 correlate with

each other, we explore multi-label classification techniques that exploit label

co-occurrence such as classifier chains (Read, Pfahringer, Holmes and Frank,

2011). The fitted multi-label classification model is then used to classify the

remaining unlabelled words into emotions.

To the best of our knowledge, this is the first emotion lexicon expansion

model for tweets in which a word-level multi-label classifier is trained using

features calculated from unlabelled corpora.

Probably the most related work to ours, which was already described in

Chapter 2, was proposed in (Mohammad and Kiritchenko, 2015). In that work,

an emotion-oriented lexicon is built using PMI associations from tweets anno-

tated with emotion-oriented hashtags: #anger, #disgust, #fear, #happy, #sad-

ness, and #surprise. There are two limitations of this approach: 1) words that

do not co-occur with those emotion-oriented hashtags will be excluded, and

2) there are many domains in which hashtags are not frequently used to ex-

press emotions, and for which this approach would be unsuitable for creating
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domain-specific emotion lexicons. In contrast, our approach takes a target

corpus of unlabelled tweets from any domain and a seed lexicon to perform

the induction.

4.2.1 Multi-label Classification of Words into Emotions

Analogously to the process conducted in Section 4.1, the first step is to to-

kenise and extract word-level features from a target corpus of ten million

unlabelled tweets written in English taken from the Edinburgh corpus (ED).

We use two models for extracting word-level features: 1) the tweet centroid

model, and 2) the skip-gram model (Mikolov et al., 2013). For the tweet cen-

troid model we again consider unigrams (UNI) and Brown clusters (BWN) for

building the feature space, and we add two new types of features:

1. POS n-grams (POS): the tweet is POS-tagged and the frequency of each

POS unigram and bigram is counted.

2. Distant Polarity (DP): two features consisting of the positive and negative

probabilities returned by a logistic regression model trained from a dis-

tant supervision corpus of 1.6. million tweets labelled with positive and

negative emoticons (Go et al., 2009) using unigrams as features. These

features are analogous to the soft labels obtained with the model transfer

approach in Chapter 3.

The tokenisation process, the POS tags, and the Brown clusters are taken

again from the TweetNLP project.

We also use the negative sampling method for training skip-gram word-

embeddings (W2V) from the target corpus that is implemented in word2vec5.

In this method, a neural network with one hidden layer is trained for predict-

ing the words surrounding a centre word, within a window that is shifted along

the target corpus.

The NRC-10 words that occur in the target corpus are labelled according to

the corresponding emotions and their feature vectors are used for training a

multi-label classifier. We use three multi-label classification techniques:

1. Binary Relevance (BR), in which a separate binary classifier is trained per

label.

5https://code.google.com/p/word2vec/

101

https://code.google.com/p/word2vec/


Chapter 4 Distributional Models for Affective Lexicon Induction

2. Classifier Chains (CC) (Read et al., 2011), in which inter-label dependen-

cies are exploited by cascading the predictions for each binary classifier

as additional features along a random permutation of labels.

3. Bayesian Classifier Chains (BCC) (Zaragoza, Sucar, Morales, Bielza and

Larrañaga, 2011), in which a Bayesian network that represents depen-

dency relations between the labels is learned from the data and used to

build a classifier chain based on these dependencies.

The resulting classifiers are used to classify the remaining unlabelled words

into emotions.

4.2.2 Evaluation

The proposed approach is evaluated both intrinsically and extrinsically as de-

scribed in the sub-sections below.

Intrinsic Evaluation

We start with an intrinsic evaluation comparing the micro-averaged and macro-

averaged F1 measures obtained for the ten affective labels. We consider dif-

ferent combinations of features and classifiers. These experiments are carried

out using MEKA6, a toolbox for multi-label classification. In order to obtain

association scores for each label we use an L2-regularised logistic regression

from LIBLINEAR, with the regularisation parameter C set to 1.0, as the base

learner in the different models.

Multi-label evaluation measures aggregate classification errors of multiples

labels. NRC-10 has many words that are not associated with any affective

category. Consequently, the majority class for each label is the negative class,

which means the corresponding emotion is not present. We use micro and

macro F1 scores to avoid obtaining misleading results from biased models that

tend to classify all words to the majority class for all labels, i.e., classify all

words as neutral. We describe how to calculate these measures for a particular

multi-label classifier as follows.

Let E be the set of all the affective categories (|E| = 10), Ai be the words

associated with affective category ei, Oi be the words classified to class ei, and

Bi = Ai ∩ Oi be the words that are correctly classified by the model to ei. As

seen in Chapter 2, the precision (Pi), recall (Ri), and F1 score (F1i) for a single

label ei are calculated as:

6http://meka.sourceforge.net/
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Pi =
Bi

Oi

(4.8)

Ri =
Bi

Ai
(4.9)

F1i =
2 · Pi ·Ri

Pi +Ri

. (4.10)

The macro-averaged F1 is calculated by averaging the F1 scores of all the

affective categories:

macroF1 =
1

|E|

|E|∑
i=1

F1i. (4.11)

This measure treats all the labels as equally important. Hence, it is very

sensitive to changes in infrequent labels.

On the other hand, micro-averaged scores take the label distribution into

account. Thus, they give more importance to frequent labels (Sintsova and

Pu, 2016).

The micro-averaged Precision, Recall, and F1 score, are calculated according

to the following expressions:

microP =

∑
i |Bi|∑
i |Oi|

(4.12)

microR =

∑
i |Bi|∑
i |Ai|

(4.13)

microF1 =
2 ·microP ·microR

microP + microR
. (4.14)

All NRC-10 words that occur at least fifty times in the target corpus are used

in our experiments. There were 10, 137 such words (902 are associated with

anger, 694 with anticipation, 1, 101 with fear, 579 with joy, 885 with sadness,

432 with surprise, 981 with trust, 2, 314 with negative sentiment, and 1, 818

with positive sentiment).

Before training the word embeddings (W2V) from the target corpus of ten

million tweets, we tune the window size and dimensionality of the skip-gram

model by conducting a grid-search process in which we train a binary rele-

vance word-level multi-label classifier on the NRC-10 words with 2-fold cross-

validation for each parameter configuration. This process is performed over

a collection of 1 million tweets independent from the target corpus using the

micro averaged F1 measure as performance metric. As shown in the heatmap
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in Figure 4.2, the optimum parameters are a window size of 5 and the number

of dimensions set to 400. We used this parameter configuration for training

the W2V features from the target corpus. From the figure, we can observe

that embeddings built using windows smaller than two are not sufficient for

capturing emotion-bearing words.
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Figure 4.2: Emotion classification results obtained using word embeddings of differ-
ent dimensionalities, generated from various window sizes. Maximum F1
is achieved for 400 by 5.

The word-level multi-label classification results for the micro-averaged and

macro-averaged F1 measures obtained by training the three multi-label classi-

fication schemes BR, CC7, and BCC using 10-fold cross-validation are shown

in Table 4.8. We compare word-level vectors by concatenating different com-

binations of the features presented in Section 4.2.1: UNI, BWN, POS, DP, and

W2V. The unigram feature-space (UNI) is used as the baseline and is compared

with the other feature spaces using a corrected resampled paired t -test with

an α level of 0.05 (Nadeau and Bengio, 2003).

From the table we can see that distributional features that go beyond word

counts, such as BWN, and DP, produce statistically significant improvements

over using unigrams alone. On the other hand, W2V alone obtains a better

performance than the other features and is only slightly improved when com-

bined with certain features such as DP. This suggests that low-dimensional

embeddings trained from unlabelled tweets capture stronger information for

emotion classification than word-level features derived by the tweet centroid

model. Although these features can produce a competitive representation they

do not add much value to W2V. Regarding the multi-label classification tech-

niques, there are no observable benefits of methods that exploit label inter-

7Ensembles of classifier chains were also evaluated, with no evidence of improvement over a
single chain.
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Micro-Averaged F1

Classifier BR CC BCC
UNI (Baseline) 0.389 ± 0.03 0.371 ± 0.03 0.378 ± 0.03
UNI-BWN 0.410 ± 0.03 + 0.400 ± 0.03 + 0.407 ± 0.03 +
UNI-BWN-POS 0.411 ± 0.03 + 0.405 ± 0.02 + 0.407 ± 0.03 +
UNI-BWN-POS-DP 0.433 ± 0.03 + 0.427 ± 0.03 + 0.432 ± 0.03 +
UNI-BWN-POS-DP-W2V 0.477 ± 0.03 + 0.474 ± 0.03 + 0.478 ± 0.03 +
W2V 0.473 ± 0.03 + 0.469 ± 0.03 + 0.472 ± 0.03 +
W2V-BWN 0.468 ± 0.03 + 0.469 ± 0.03 + 0.47 ± 0.03 +
W2V-BWN-POS 0.465 ± 0.03 + 0.466 ± 0.03 + 0.466 ± 0.02 +
W2V-BWN-POS-DP 0.474 ± 0.03 + 0.473 ± 0.03 + 0.475 ± 0.03 +
W2V-DP 0.479 ± 0.03 + 0.476 ± 0.03 + 0.479 ± 0.03 +

Macro-Averaged F1

Classifier BR CC BCC
UNI (Baseline) 0.272 ± 0.03 0.236 ± 0.02 0.257 ± 0.03
UNI-BWN 0.318 ± 0.02 + 0.302 ± 0.03 + 0.316 ± 0.03 +
UNI-BWN-POS 0.320 ± 0.02 + 0.308 ± 0.02 + 0.319 ± 0.03 +
UNI-BWN-POS-DP 0.344 ± 0.03 + 0.335 ± 0.02 + 0.346 ± 0.02 +
UNI-BWN-POS-DP-W2V 0.401 ± 0.03 + 0.391 ± 0.03 + 0.402 ± 0.03 +
W2V 0.392 ± 0.03 + 0.381 ± 0.03 + 0.393 ± 0.03 +
W2V-BWN 0.390 ± 0.02 + 0.388 ± 0.02 + 0.395 ± 0.02 +
W2V-BWN-POS 0.388 ± 0.02 + 0.385 ± 0.02 + 0.392 ± 0.02 +
W2V-BWN-POS-DP 0.398 ± 0.03 + 0.392 ± 0.03 + 0.401 ± 0.03 +
W2V-DP 0.397 ± 0.03 + 0.391 ± 0.03 + 0.400 ± 0.03 +

Table 4.8: Word-level multi-label classification results. Best results per column for
each performance measure are shown in bold. The symbol + corresponds
to statistically significant improvements with respect to the baseline.

dependencies, such as CC and BCC, over BR.

The trained multi-label classifiers are used to create Twitter-specific word-

emotion associations by classifying the 42, 900 unlabelled words from the cor-

pus into 10-dimensional affect vectors. A word cloud of the expanded lexicon

that combines all the features, trained with BCC, is shown in Figure 4.3. The

word sizes are proportional to the estimated probabilities associated with the

corresponding emotions.

Most of the word-emotion associations shown in the figure are intuitively

plausible. However, there also words with prominent associations that are

not intuitive, such as the number 17.00 for the emotion surprise. This token

receives an association probability of 0.99 for that emotion. We inspected the

tweets from the Edinburgh corpus containing this token and we found the

following tweet retweeted around 200 times:

• We hope you like our random raffles ? Retweet this msg for an entry into

our monday raffle ! Only until 17.00 GMT !
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Figure 4.3: A visualisation for the expanded emotion lexicon.

The reason why the token 17.00 exhibits a strong association with surprise

is because it co-occurs multiple times with the word raffle, which in turn, is an

NRC-10 surprise word. The tweet centroid model used for building this lexicon

produces similar vectors for words that are likely to co-occur in a tweet. This

type of association is referred to as first-order co-occurrence or syntagmatic

association (Schütze and Pedersen, 1993).

This shows that the tweet centroid model can be sensitive to over-represented

co-occurrences produced by retweets. In this case the retweets occurred be-

cause the author offered a reward for it. A possible approach to tackled this

problem is to discard retweets from the corpus, or to discard numbers and

other type of words unlikely to bear emotions.

On the other hand, the word 17.00 is not strongly associated with any emo-

tion in the lexicon built using only W2V embeddings. This is because in the

skip-gram model words that co-occur in a corpus of tweets do not necessar-

ily produce similar vectors. The skip-gram model is based on second-order

co-occurrences or paradigmatic associations (Schütze and Pedersen, 1993),

where words need to have similar neighbouring words in order to receive sim-

ilar vectors.

This example suggests that second-order associations are more robust to

over-represented co-occurrences for producing semantic vectors.
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Extrinsic Evaluation

We conduct an extrinsic evaluation by studying the usefulness of the expanded

lexicons for classifying Twitter messages into emotion categories. We use the

Twitter Emotion Corpus (Mohammad, 2012), which has 21, 051 tweets labelled

by a single-label multi-class emotional label. The labelling was performed us-

ing hashtags. The number of tweets per class is 3, 849 for surprise, 3, 830 for

sadness, 8, 240 for joy, 761 for disgust, 2, 816 for fear, and 1, 555 for anger. Us-

ing 10-fold cross-validation, we compare a one-vs-all logistic regression that

uses attributes calculated from NRC-10 alone (the baseline), with the perfor-

mance obtained by a classifier trained with attributes derived from NRC-10

and the expanded lexicon.

As previously, the comparisons are carried out using the corrected resam-

pled paired t -test. We calculate ten numerical features from NRC-10 by count-

ing the number of words in a tweet matching each emotion category, and an-

other ten features from the expanded lexicon, calculated as the sum of the

corresponding affect probabilities for the matched words, obtained from the

multi-label word-level model. Therefore, tweets are represented by ten fea-

tures in the baseline (NRC-10 alone), and by twenty features for each ex-

panded lexicon (with one lexicon for each multi-label classifier considered

above). The kappa statistic and weighted area under the ROC curve (AUC)

for all the logistic regression models trained with different expanded lexicons

is given in Table 4.9.

Lexicon Kappa AUC
NRC-10 (alone) 0.077 0.633
NRC-10+Expanded BR CC BCC BR CC BCC
UNI 0.191 + 0.201 + 0.198 + 0.711 + 0.714 + 0.713 +
UNI-BWN 0.174 + 0.178 + 0.176 + 0.708 + 0.712 + 0.711 +
UNI-BWN-POS 0.175 + 0.177 + 0.178 + 0.708 + 0.711 + 0.710 +
UNI-BWN-POS-DP 0.180 + 0.183 + 0.184 + 0.713 + 0.715 + 0.714 +
UNI-BWN-POS-DP-W2V 0.187 + 0.197 + 0.183 + 0.712 + 0.714 + 0.713 +
W2V 0.223 + 0.226 + 0.226 + 0.720 + 0.723 + 0.723 +
W2V-BWN 0.199 + 0.201 + 0.197 + 0.713 + 0.715 + 0.715 +
W2V-BWN-POS 0.195 + 0.201 + 0.196 + 0.710 + 0.713 + 0.712 +
W2V-BWN-POS-DP 0.199 + 0.204 + 0.199 + 0.714 + 0.715 + 0.715 +
W2V-DP 0.223 + 0.223 + 0.226 + 0.722 + 0.723 + 0.723 +

Table 4.9: Message-level classification results over the Hashtag Emotion Corpus.
Best results per column are given in bold.

All the expanded lexicons are statistically significantly better than using

NRC-10 alone. Note that all these improvements are substantial in all cases.

Similarly to the intrinsic results, we observe that the lexicons created using
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Chapter 4 Distributional Models for Affective Lexicon Induction

W2V alone and W2V-DP are the strongest ones. Another interesting result is

that lexicons created with multi-label classifiers that exploit label correlations,

such as CC and BCC, are slightly better than the ones created using BR in most

cases.

4.3 Discussion

In this chapter, we studied distributional representations for acquiring senti-

ment knowledge by classifying Twitter words into affective dimensions in a

supervised fashion. Our experimental results show the usefulness of the in-

duced words for message-level classification into both polarity and emotion

categories. The main advantage of this methodology is that it depends on

resources that are relatively cheap to obtain: a seed lexicon, and a collec-

tion of unlabelled tweets. The former can be obtained from publicly available

resources such as the ones used in this work, and the latter can be freely

collected from the Twitter API.

In contrast to earlier work on creating polarity and emotion lexicons for

Twitter (Becker et al., 2013; Mohammad et al., 2013; Zhou et al., 2014; Mo-

hammad and Kiritchenko, 2015), which are restricted to tweets annotated with

emoticons or emotional hashtags, our methodology can learn affective words

from any collection of unannotated tweets. Hence, our approach can be used,

without any additional labelling effort, for creating domain-specific emotion

lexicons based on unlabelled tweets collected from the target domain, such as

politics and sports.

We also observed that low-dimensional word-embeddings are better than

distributional word-level features obtained by averaging tweet-level features.

This is aligned with recent findings in NLP showing that representations learned

from unlabelled data using neural networks outperform representations ob-

tained from hand-crafted features (Baroni, Dinu and Kruszewski, 2014).

The tuning process for the parameters of the W2V embeddings in Figure 4.2

includes the test data for the intrinsic task. This is because all NRC-10 word

are used for tuning the embeddings, and they are also used for training and

testing the word-level classifiers. However, the embeddings are tuned using

vectors calculated from an independent collection of tweets, which are differ-

ent to the ones used in the intrinsic evaluation. This should mitigate optimistic

bias in the intrinsic task. Furthermore, W2V also exhibited strong results in

the extrinsic task, which was completely independent of the NRC-10 words.

This suggests that the embeddings are unlikely to be overfitted.
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4.3 Discussion

Note that the tweet centroid model proposed in this chapter has two novel

properties that are lacking from other semantic vector models:

1. It can be used together with any type of message-level feature set.

2. It represents words and tweets in the same vector space.

The first property enables the creation of task-specific word vectors. For

example, the DP feature used in this chapter is a sentiment-specific feature

obtained from message-level attributes. The second property will be further

exploited in Chapter 5, where we will use it for transferring sentiment knowl-

edge between words and tweets.
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Chapter 5

Transferring Sentiment Knowledge
between Words and Tweets

Thus far we have presented two models for inducing Twitter-specific polarity

lexicons and shown that lexicons built with these models can produce use-

ful features for classifying the sentiment of tweets. Nevertheless, sentiment-

annotated tweets are required in order to train a message-level polarity clas-

sifier that uses these lexicon-based features, and we know from our discussion

of the label sparsity problem that obtaining these annotations is time consum-

ing and labour intensive.

Another drawback of these lexicon induction models is that they depend on

a seed lexicon of labelled words for training the word-level classifier. These

lexicons are not necessarily available for all languages. When no seed lexi-

con is available, it is desirable to be able to induce a lexicon from sentiment-

annotated tweets (e.g., tweets annotated with emoticons), as is done by the

PMI-SO method introduced in Chapter 2. In this chapter, we introduce a trans-

fer learning approach for achieving this.

Transfer learning refers to the process of improving the learning of a predic-

tive function for a target domain DT using knowledge obtained from a related

source domain DS (Pan and Yang, 2010). Inspired by this principle, we will

use the tweet centroid model (TCM) introduced in Chapter 4 for transferring

sentiment knowledge from the word domain DW to the message domain DM
and vice versa.

The tweet centroid model represents tweets and words by feature vectors

of the same dimensionality. Tweets can be represented using standard natu-

ral language processing (NLP) features such as unigrams and part-of-speech

(POS) tags, and words are represented by the centroids of the tweet vectors

in which they occur.

Classifiers trained from the word or message domain can be deployed on

111



Chapter 5 Transferring Sentiment Knowledge between Words and Tweets

data from the other domain because both tweets and words can be labelled

according to the same sentiment categories, e.g, positive and negative (YW =

YM). Therefore, a word-level classifier trained from a polarity lexicon and a

corpus of unlabelled tweets can be used for classifying the sentiment of tweets.

Likewise, we can train a message-level classifier from a corpus of sentiment-

annotated tweets and use it for classifying words into sentiment classes. This

idea is illustrated in Figure 5.1.

Happy morning pos

What a bummer! neg

Lovely day pos

     Target tweets

lol pos

grr neg

Target words

w1 w2 w3 w4 w5

w1 1 0 0 1 0

w2 0 1 0 0 1

w3 0 0 1 0 1

w4 1 0 0 1 0

w5 0 0.5 0.5 0 1

w1 angry

w2 happy

w3 good

w4 grr

w5 lol

vocabulary

lol happy

lol good

grr angry

Word vectors

w1 w2 w3 w4 w5

t1 0 1 0 0 1

t2 0 0 1 0 1

t3 1 0 0 1 0

Tweet  vectors

  Tweet 
centroids

Label words
and train a
word-level
classifier 

Label tweets
and train a
tweet-level
classifier 

Figure 5.1: Transfer Learning with tweet centroids. The bird represents the Weka
machine learning software.

This transfer learning approach is useful in scenarios where either message-

level polarity classification or polarity lexicon induction needs to be performed

but it is easier to obtain annotated data from the other domain. We evaluate

our approach in two transfer learning problems: 1) training a tweet-level po-

larity classifier from a polarity lexicon, and 2) inducing a polarity lexicon from

a collection of polarity-annotated tweets. Our results show that the proposed

approach can successfully classify words and tweets after transfer.

The transferability of sentiment knowledge between words and tweets is

based on the hypothesis that there is a sentiment interdependence relation

between them. This relation, which was first observed in (Sindhwani and
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Melville, 2008) in the case of larger text documents, is defined by the following

two statements:

1. The polarity of a tweet is determined by the polarity of the words it con-

tains.

2. The polarity of a word is determined by the polarity of the tweets in which

it occurs.

The remainder of this chapter is organised as follows. The proposed transfer

learning approach is formalised in Section 5.1. In Section 5.2, we present the

experiments we conducted to evaluate the proposed approach and discuss

results. The main findings are discussed in Section 5.3.

5.1 Tweet-Centroids for Transfer learning

In this section we revisit the tasks of message-level polarity classification and

polarity lexicon induction. Afterwards, we show how the tweet centroid model

can be used for sentiment transfer learning between words and messages.

Following the notation proposed in (Pan and Yang, 2010), a domain D con-

sists of two components: a feature space X and a probability distribution

P (X), where X = {x1, . . . , xn} ∈ X and each xi is a numeric feature. Given

a particular domain D, a task T consists of a label space Y and a predictive

function f that can be learned from training data consisting of pairs {x, y}
where x ∈ X and y ∈ Y. The function f can be used for predicting the corre-

sponding label f(x) of a new instance x.

In the Twitter sentiment analysis context, a tweet or message m is formed

by a sequence of words. We assume a tweet is represented by a k -dimensional

vector −→x residing in a feature space XM that belongs to the message domain

DM. Different NLP features can be used to form XM. In this chapter, we again

consider three types of features that have proven to be useful for sentiment

analysis of tweets (Kiritchenko et al., 2014): 1) Word unigrams (UNI), 2) Brown

clusters (BWN), and 3) part-of-speech tags (POS).

The message-level sentiment label space YM corresponds to the different

sentiment categories that can be expressed in a tweet, e.g., positive, negative,

and neutral. For simplicity, we will only consider the two classes positive

and negative in this chapter. Because sentiment is a subjective judgment, the

ground-truth sentiment category of a tweet must be determined by a human

evaluator.
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Given a corpus of sentiment-annotated tweets CL, a message-level polarity

classifier fM can be trained using standard supervised learning methods and

then be used for the message-level polarity classification task. Annotated cor-

pora are commonly not available for creating domain-specific sentiment clas-

sifiers due to the high costs involved in the annotation process. On the other

hand, a large corpus of unlabelled public tweets CU can be freely obtained

from the Twitter API. Tweets restricted to a specific language, geographical

region, or set of key words can also been collected for creating domain-specific

collections.

Words can be annotated according to the same sentiment categories as mes-

sages (YW = YM) to indicate their prior sentiment. Examples of positive words

are happy and great, and examples of negative ones are sad and miserable.

Again, the ground-truth sentiment of a word is a subjective judgment deter-

mined by a human. We refer to a list of words annotated by sentiment as a

polarity lexicon L.

The tweet centroid model proposed in Chapter 4 represents words as the

centroids of the k-dimensional tweet vectors pertaining to those tweets in a

corpus of unlabelled tweets CU that contain the words. Thus, the tweet cen-

troid model can be used to form a word domain DW with the same feature

space as the one used for representing the messages (−→w ∈ X ) in the message

domain DM.

Taking the words from the vocabulary that match a given polarity lexicon

(V ∩L), a word-level polarity classifier fW can be trained and used for classify-

ing the remaining unlabelled words, thus solving the polarity lexicon induction

task as done in Chapter 4.

Transfer learning requires the source and the target tasks to be related

to each other. We hypothesise that there is a strong relationship between

message-level polarity classification and polarity lexicon induction because the

sentiment of a tweet is associated with the sentiment of the words it contains

and the sentiment of a word is associated with the sentiment of the tweets that

use it.

Assuming that this hypothesis is true, we can apply the tweet centroid model

for addressing message-level polarity classification and polarity lexicon induc-

tion by taking labels from the respective other domain. Considering that both

tweets and words reside in the same feature space, and given a collection of

unlabelled tweets CU , we can classify the sentiment of messages using a word-

level classifier fW trained with tweet centroids labelled by a polarity lexicon
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L.

It is important to note that the number of labelled words for training fW

is limited to the number of words from L occurring in CU . As was shown in

Chapter 2, most of existing hand-annotated polarity lexicons contain less than

10, 000 words. This means that our method is not capable of exploiting large

collections of unlabelled tweets for producing training datasets larger than the

size of L. We propose a modification of our method for increasing the number

labelled instances it produces. The modification is based on partitioning the

word-tweet sets. The word-tweet set M(w) for each word from the lexicon

(w ∈ L) is partitioned into smaller disjoint subsetsM(w)1, . . .M(w)z of a fixed

size determined by a parameter p where z = |M(w)|/p. We calculate one tweet

centroid vector −→w for each partition labelled according to L. As is shown

in Section 5.2.2, this modification leads to substantial improvements when

transferring sentiment knowledge from words to tweets.

The reverse transfer of sentiment knowledge is also possible. Given a message-

level polarity classifier fM trained on a corpus of tweets CL annotated by sen-

timent, a polarity lexicon can be induced by applying fM to the words in CL,

simply by representing these words by the centroids of the tweets in CL that

contain them. Alternatively, considering that sentiment-annotated corpora are

usually small and word-level distributional representations such as these cen-

troids capture richer semantic information when calculated from large docu-

ment corpora, it is also possible to perform the induction by applying fM to

word vectors (i.e., tweet centroids) calculated from a larger corpus of unla-

belled tweets CU .

Our transfer learning approach is novel in the sense that both the source do-

main and target domain are represented with the same feature space (XM =

XW). In most previous transfer learning models for text classification the fea-

tures spaces of the two domains are different (Pan and Yang, 2010).

It is important to clarify that the message domain DM and the word domain

DW do not have the same probability distribution and, hence, our model per-

forms transfer learning according to the definition from Pan and Yang (2010).

The probability distribution of the tweet domain, P (Xm), is formed by sparse

features such as unigrams and Brown clusters, whereas the distribution of the

word domain, P (Xw), is formed by averaging vectors from the tweet domain,

which yields dense vectors with lower variance. Moreover, the conditional

distributions of the two sentiment classification tasks are not the same either.

P (Yw|Xw) encodes the relation between the prior polarity of a word and its
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distributional representation, whereas P (Ym|Xm) represents the relation be-

tween the polarity of a message and its sparse feature vector. Hence, normally,

P (Yw|Xw) 6= P (Ym|Xm)1.

The two domains are clearly different. However, assuming that the senti-

ment interdependence relation is true, we expect the two domains to be suf-

ficiently associated with each other to allow the transferability of sentiment

knowledge between them.

5.2 Experiments

In this section, we conduct an experimental evaluation of the proposed ap-

proach. The evaluation is divided into three parts. First, we empirically study

the interdependence relation between tweets and words. Second, we evaluate

how to transfer sentiment labels from words to tweets. Finally, we evaluate

how to induce a polarity lexicon from tweets annotated by sentiment.

5.2.1 The word-tweet sentiment interdependence relation

We start by studying the sentiment interdependence relation between docu-

ments and words in Twitter: the sentiment of documents determines the sen-

timent of the words they contain, while the sentiment of words determines the

sentiment of the tweets that contain them.

We describe positive and negative tweets based on the polarity of their

words, and likewise, describe positive and negative words from a given po-

larity lexicon according to the polarity of the tweets in which they occur. We

expect to observe clear differences between elements of different polarities

based on these descriptions. The annotated data we use for this is taken

from the SemEval corpus of sentiment annotated tweets and the AFINN lexi-

con (Årup Nielsen, 2011) of positive and negative words. Both datasets were

already used in previous chapters.

The SemEval (Nakov et al., 2013) corpus is formed by 5232 positive tweets

and 2067 negative tweets annotated by human evaluators using the crowd-

sourcing platform Amazon Mechanical Turk2. Each tweet is annotated by five

Mechanical Turk workers and the final label is determined based on the ma-

jority of the labels.

1If we consider the partitioned version of the model, the smaller the value of the partition
size p, the more similar the conditional distributions of the two domains. Indeed, if p is set
to one, both distributions are the same.

2http://www.mturk.com
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The AFINN lexicon is formed by 1176 positive words and 2204 negative

words, annotated by Finn Årup Nielsen, and includes informal words com-

monly found in Twitter such as slang, obscene words, acronyms and Web jar-

gon. AFINN does not include any emoticons.

We describe each tweet from SemEval by a message-level polarity variable

calculated as the difference between the number of positive and negative

words from the AFINN lexicon found in the message. This variable is nor-

malised by the total number of words in the tweet. The tweets that do not

have words from the lexicon are discarded, resulting in 1638 negative and

4193 positive tweets. The median of this variable for negative and positive

tweets is −0.04 and 0.05 respectively. The polarity of positive and negative cat-

egories is also compared using a Wilcoxon rank sum test obtaining a p-value

less than 2.2e−16. This shows that there is statistical evidence that negative

tweets are more likely to be formed by negative words than positive ones, and

likewise positive tweets are more likely to contain positive words than neg-

ative ones. These results support the first part of the proposed tweet-word

sentiment interdependence relation: the sentiment of a tweet is determined

by the polarity of its words.

We also describe each word from the AFINN lexicon by a word-level polarity

variable calculated as the difference between the number of positive and neg-

ative tweets that contain it. This variable is normalised by the total number of

tweets in which the word is used. To reduce the noise induced by infrequent

words, we discard words occurring in fewer than three tweets, resulting in

259 positive and 250 negative words. The median of the word-level polarity

for positive and negative classes is 0.76 and −0.33 respectively. We compare

this variable for both sentiment classes using a Wilcoxon rank sum test and the

resulting p-value is again less than 2.2e−16. Hence there is also statistical evi-

dence that positive and negative words occur more frequently in tweets with

the same polarity than in tweets with the opposite one. These results support

the second part of the tweet-word sentiment interdependence relation: the

sentiment of a word is determined by the sentiment of the tweets in which it

occurs.

The distribution of the message-level and word-level polarity variables for

each corresponding sentiment category is shown in the violin plots in Fig-

ure 5.2.

From the plot we can observe that the interquartile range of the tweet-level

polarity lies below zero for the negative class and above zero for the posi-
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Figure 5.2: Violin plots of the polarity of tweets and words.

tive one, suggesting that tweets of different sentiment classes have different

distributions when considering the sentiment of their words. Regarding the

words we can again observe that the interquartile ranges lie below and above

zero for negative and positive words respectively. Note that the gap between

the positive and negative interquartile range is larger than the corresponding

gap in the case of tweets. We believe that this is because there is more com-

plete information available for describing words according to the polarity of

the tweets in which they occur than for describing tweets according to the po-

larity of their words. In one case, the sentiment labels of the tweets in which

opinion words occur are fully given by the sentiment-annotated corpus. In the

other case, we only have the polarity of the words from a tweet that match

the lexicon but do not have sentiment information for the other words in the

tweet.

5.2.2 From opinion words to sentiment tweets

In this subsection, we evaluate the transfer of sentiment labels from words

to tweets for solving the message-level polarity classification task. We train

a word-level classifier fW on tweet centroids calculated from a collection of

unlabelled tweets CU , where these centroids are labelled according to a po-

larity lexicon L. We also study the effect of partitioning the word-tweet sets

to increase the number of training instances obtained with our tweet centroid

method.

The collection of unlabelled tweets is taken again from the Edinburgh corpus

and we use AFINN as the polarity lexicon for the centroid labels.

The features used for representing the tweets and the words from CU are:
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unigrams, POS tags, and Brown clusters. The tweets are lowercased, and

user mentions and URLs are replaced by special tokens in the same way as in

previous chapters.

We only consider word vectors of words that are included in the lexicon, and

we also discard words occurring in fewer than ten tweets to avoid learning

spurious relationships from infrequent words. The classifier is trained using

an L2-regularised logistic regression taken from LIBLINEAR, with the regular-

isation parameter C set to 1.0.

We compare our model with classifiers trained using two distant supervi-

sion methods for obtaining training instances from unlabelled corpora: the

emoticon-annotation approach (EAA) and the lexicon-annotation approach (LAA).

In EAA we use the following positive and negative emoticons for labelling

tweets from the source collection: “:)”, “:D”, “=D”, “=)”, “:]”, “=]”, “:-)”, “:-D”,

“:-]”, “;)”, “;D”, “;]”, “;-)”, “;-D”, and “;-]” for positive tweets and “:(”, “=(”, “;(”,

“:[”, “=[”, “:-(”, “:-[”, “:’(”, “:’[”, and “D:” for negative tweets. Tweets without

emoticons and tweets containing both positive and negative emoticons are

discarded. The emoticons are removed from the content after labelling.

In LAA the tweets from CU are labelled using the AFINN lexicon. The tweets

with at least one positive word and no negative word are labelled positive, and

analogously, tweets with at least one negative word and no positive word are

labelled negative.

The classification of tweets into sentiment categories using a model trained

from word vectors represented by the tweet centroid model is a form of dis-

tant supervision because we are relying on a heuristic function for automat-

ically obtaining training data for our message-level sentiment classification

task. The goal of comparing TCM against EAA and LAA is to determine which

distant supervision model generates better training data for polarity classifi-

cation from a source corpus of unlabelled tweets.

It is important to recall that the training examples produced with the three

methods reside in the same feature space. We study different configurations

of TCM. The first configuration is the original version of TCM, in which we

obtain one instance per word. The other configurations correspond to parti-

tioned versions of TCM, in which the tweet-word sets of each word from the

lexicon are randomly partitioned into disjoints subsets of size p. The centroids

are calculated from the partitions, and hence, multiple training instances are

produced for words occurring in more than p tweets. The partitioning is im-

plemented by enumerating the tweets in each word-tweet set and creating
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consecutive sublists of size p. The last partition of the set will be smaller than

p if there is a remainder when dividing the size of the set by the value of p.

The evaluation of the classifiers is carried out on the same three manually

annotated collections of tweets used in Chapters 3 and 4: SemEval, 6Human-

Coded, and Sanders. The target tweets are represented by the same features

as the tweets used for building the word vectors.

As was described in the previous subsection, the SemEval corpus is formed

by 5232 positive and 2067 negative hand-annotated tweets. The 6Human-

Coded dataset is a collection of tweets scored according to positive and neg-

ative numeric scores by at least three human evaluators. The ratings are av-

eraged and we use the difference of these scores to create polarity classes

and discard messages where this difference is zero. The resulting dataset has

1340 positive and 949 negative tweets. The Sanders dataset consists of 570

positive and 654 negative tweets evaluated by a single human annotator.

We study the average performance obtained by classifiers trained on labelled

instances generated by different configurations of TCM, EAA, and LAA, using

ten independent subsamples of 2 million tweets from the Edinburgh corpus

as the source data. The average number of positive and negative instances

obtained by each model from the ten subsamples is shown in Table 5.1.

We can see from the table that LAA produces the largest training dataset

and that the original version of TCM produces the smallest one. Regarding

the partitioned version of TCM, we observe that the lower the value of p, the

larger the number of instances produced.

From the ten training sets, we compare the average area under the ROC

curve (AUC) obtained on the three target collections of tweets for TCM and

the two baselines EAA and LAA using a paired Wilcoxon signed-rank test with

the significance value set to 0.05. AUC is a useful metric for comparing the per-

formance of classifiers because it is independent of any specific value for the

decision threshold. The comparisons are done for the three target collections

of tweets and the results are given in Table 5.2. The statistical significance

tests of each configuration of TCM with respect to EAA and LAA are indicated

by a sequence of two symbols. Improvements are denoted by a plus (+), degra-

dations by a minus (-), and cases where no statistically significant difference

is observed by an equals (=). The baselines are also compared against each

other.

Regarding the baselines, we observe that LAA is better than EAA in 6Hu-

manCoded and SemEval but worse in Sanders. The original version of TCM is
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Avg. Positive (%) Avg. Negative (%) Avg. Total (%)
EAA 130, 641 (6.5%) 21, 537 (1.1%) 152, 179 (7.6%)
LAA 681, 531 (34.1%) 294, 177 (14.7%) 975, 708 (48.8%)
TCM 1537 (0.05%) 951 (0.08%) 2488 (0.12%)
TCM (p=5) 276, 696 (13.8%) 149, 989 (7.5%) 426, 684 (21.3%)
TCM (p=10) 138, 596 (6.9%) 75, 390 (3.8%) 213, 986 (10.7%)
TCM (p=20) 69, 518 (3.5%) 38, 044 (1.9%) 107, 563 (5.4%)
TCM (p=50) 32, 231 (1.6%) 17, 950 (0.9%) 50, 181 (2.5%)
TCM (p=100) 14, 338 (0.7%) 8357 (0.4%) 22, 695 (1.1%)

Table 5.1: Average number of positive and negative instances generated by different
models from 10 collections of 2 million tweets.

6HumanCoded Sanders SemEval
EAA 0.805 ± 0.005 = - 0.800 ± 0.017 = + 0.802 ± 0.006 = -
LAA 0.809 ± 0.001 + = 0.778 ± 0.002 - = 0.814 ± 0.000 + =
TCM 0.776 ± 0.004 - - 0.682 ± 0.024 - - 0.779 ± 0.008 - -
TCM (p=5) 0.834 ± 0.002 + + 0.807 ± 0.008 = + 0.833 ± 0.002 + +
TCM (p=10) 0.845 ± 0.003 + + 0.817 ± 0.006 + + 0.841 ± 0.002 + +
TCM (p=20) 0.850 ± 0.003 + + 0.815 ± 0.011 + + 0.844 ± 0.003 + +
TCM (p=50) 0.844 ± 0.004 + + 0.785 ± 0.010 - + 0.836 ± 0.004 + +
TCM (p=100) 0.829 ± 0.003 + + 0.752 ± 0.019 - - 0.821 ± 0.004 + +

Table 5.2: Message-level Polarity Classification AUC values. Best results per column
are given in bold.

statistically significantly worse than the two baselines. We believe that this is

because non-partitioned TCM generates too few training instances (Table 5.1).

In contrast, the partitioned TCM achieves statistically significantly improve-

ments over the two baselines in the three datasets when p equals 10 and 20.

We also observe a degradation in performance when the value of p is decreased

further (p=5). This suggests a trade-off in the value of p. If p is too large, TCM

will generate too few training instances, and conversely, if p is too small, the

instances will be calculated by averaging very few tweets, and the resulting

distributional word vectors will lack contextual information.

Regarding the performance on the different datasets, we observe a lower

performance for Sanders in comparison to the other two datasets. Consider-

ing that this is the only dataset in which labels are not obtained by averaging

multiple human evaluations, we believe that this dataset contains noisier sen-

timent labels because it reflects the subjective judgement of a single evaluator.

The results obtained in this subsection indicate that opinion words can be

successfully transferred to the message level using tweet centroids when the

centroids are obtained from partitioned data. Additionally, we conclude that

the partitioned tweet centroid method is capable of extracting better informa-
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tion from unlabelled tweets than EAA and LAA.

5.2.3 From tweets to opinion words

The research question evaluated in this subsection is whether it is possible to

transfer the sentiment knowledge obtained from a sentiment-annotated corpus

of tweets for inducing a polarity lexicon. To address this question, we train a

message-level classifier fW from a corpus of sentiment annotated tweets CL
and deploy it on words found in a corpus of unlabelled tweets, where the

words are represented by tweet centroids. We need to have a single instance

per word, so we do not partition the word-tweet sets here.

Instead of calculating the target tweet centroids from CL, we calculate them

from a larger corpus of unlabelled tweets CU that corresponds to one of the

collections of 2 million tweets used in the previous subsection. This is done

because of the following reasons:

1. There is empirical evidence that distributional semantic models of words

tend to generalise better when calculated from large corpora (Mikolov

et al., 2013).

2. By classifying the words from a larger corpus of unlabelled tweets we

can induce the polarity of words that do not necessarily occur in the an-

notated corpus.

As training data for the tweet-level classifier, we use the three annotated

collection of tweets that were previously used as testing data for training three

message-level classifiers: Sanders, 6HumanCoded, and SemEval. We build the

feature space with the same features used before: unigrams, POS tags, and

Brown clusters. We also use an L2-regularised logistic regression model with

the same parameters for learning the classifier. We only consider labelled

words from the AFINN lexicon for evaluation purposes.

We compare the word-level AUC of a message-level classifier deployed on

words represented by TCM with the AUC obtained by PMI semantic orienta-

tion (PMI-SO) (Turney, 2002), a popular method for inducing polarity lexicons

from a corpus of polarity annotated tweets CL. As was discussed in Chapter 2,

PMI-SO corresponds to the difference between the PMI of a word with positive

tweets and the PMI of the same word with negative tweets.

The words classified by TCM and PMI-SO are not necessarily the same. TCM

classifies words from a larger corpus of unlabelled tweets CU rather than clas-
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sifying the words from CL. Therefore, the words induced by TCM are indepen-

dent of the words in CL. On the other hand, PMI-SO classifies the words in the

labelled corpus CL. In order to produce a fair comparison between TCM and

PMI-SO, we compare the classification performance obtained for the words

from AFINN that are classified by both methods. The number of positive and

negative words classified by PMI-SO for each source corpus, the number of

words classified by TCM for CU , and the number of words in the intersection,

are all shown in Table 5.3.

Set of Words Pos Neg Total
PMI-SO (SemEval) 522 617 1139
PMI-SO (Sanders) 196 231 427
PMI-SO (6HumanCoded) 333 352 685
TCM 961 1554 2515
PMI-SO (SemEval) ∩ TCM 517 602 1119
PMI-SO (Sanders) ∩ TCM 194 227 421
PMI-SO (6HumanCoded) ∩ TCM 332 349 681

Table 5.3: Number of positive and negative words from AFINN.

The AUC values for the intersection of words classified by both PMI-SO and

TCM are displayed in Table 5.4. From the table we can observe that TCM

outperforms PMI-SO for inducing polarity lexicons when trained on any of the

three collections of sentiment annotated tweets. This is a noteworthy result,

considering that PMI-SO is a widely-used approach for lexicon induction. We

can also observe that classifiers trained from 6HumanCoded and SemEval

achieve satisfactory results on the AFINN words. We observe substantially

lower performance for the classifier trained from Sanders.

AUC

Source Dataset PMI-SO TCM
Sanders 0.757 0.864
6HumanCoded 0.861 0.930
SemEval 0.858 0.916

Table 5.4: Word-level polarity classification results for the AFINN lexicon. Best re-
sults per row are given in bold.

These results suggest that the performance of the tweet centroid model for

transferring sentiment knowledge from tweets to words can vary substantially

depending on the quality of the corpus of sentiment-annotated tweets. We

observe that corpora in which the labels are obtained by averaging the judg-
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ments of multiple annotators such as 6HumanCoded and SemEval are prefer-

able to corpora annotated by one single individual such as Sanders. The size

of the corpus could also be a relevant factor, considering that Sanders is the

smallest collection. It is worth mentioning that when an appropiate source

corpus is used, the word-level performance obtained after transfer (Table 5.4)

can be even better than for the reverse transfer learning task (Table 5.2).

The probabilistic output of the logistic regression model applied to tweet

centroids can be used to explore the sentiment intensities or semantic orien-

tations of Twitter words. We calculate the log odds ratio of the positive and

negative probabilities returned by the logistic regression model (log2(
P (pos)
P (neg)

))

for all the words found in the corpus of unlabelled tweets (here we also include

words that are not part of AFINN). In this way, we obtain a sentiment score

for each word in which the polarity and the intensity of a word are determined

by the sign and the absolute value of the score, respectively.

In Figure 5.3, we use word clouds to visualise the sentiment intensities of

positive and negative words classified with the message-level classifier trained

from the SemEval dataset.
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Figure 5.3: Word clouds of positive and negative words obtained from a message-
level classifier.

The left-side word cloud corresponds to positive words in which the log odds

are greater than zero (log2(
P (pos)
P (neg)

) > 0) and the size of each word is propor-

tional to its log odds score. Analogously, in the right-side word cloud, we show

negative words in wich the score is less than zero and the size of the words

is proportional to the score multiplied by -1. We observe from the figure that

the word-level sentiment intensities transferred from message-level sentiment

knowledge are plausible.
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5.3 Discussion

In this chapter, we have presented a transfer learning model for transferring

sentiment knowledge between words and tweets. This was achieved by rep-

resenting both tweets and words with the same features and deploying clas-

sifiers trained from one domain on data from the other one3. A noteworthy

aspect of this approach is its simplicity; yet, despite its simplicity, it yields

promising classification performance.

We studied the word-tweet sentiment interdependence relation on which the

proposed tweet centroid model is based, showing that the sentiment of tweets

is strongly related to the sentiment of their words and that the sentiment of a

word is strongly related to the sentiment of the tweets in which it occurs.

We observed that the partitioned version of the tweet centroid model al-

lows for accurate classification of the sentiment of tweets using a word-level

classifier trained from a corpus of unlabelled tweets and a polarity lexicon of

words. The partitioned tweet centroid model (with an appropiate partition

size) outperformed the classification performance of the popular emoticon-

based method for data labelling and also produced better results than a clas-

sifier trained from tweets labelled based on the polarity of their words (LAA).

The partitioned tweet centroid model is a lexicon-based distant supervision

model that can be used for training message-level classifiers when no tweets

annotated by sentiment are available. It can also be used for domains in which

emoticons are not frequently used. Considering that opinion lexicons are usu-

ally easier to obtain than corpora of sentiment-annotated tweets, the tweet

centroid model can significantly reduce cost when solving the message-level

polarity classification problem.

Our results also show the feasibility of the reverse transfer process, where a

polarity lexicon is induced by applying a message-level polarity classifier. We

found that TCM produces more accurate lexicons than the well-known PMI-

SO measure. The quality of the induced lexicon depends on the quality and

size of the sentiment-annotated Twitter data. An important aspect of TCM

for lexicon induction is that the word centroids can be calculated from any

collection of unlabelled tweets. Hence, the method can be used for creating

domain-specific opinion lexicons by collecting tweets associated with the tar-

get domain.

3The source code of the model is available for download at http://www.cs.waikato.ac.nz/ml/
sa/ds.html#ptcm.
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Chapter 6

Lexicon-based Distant Supervision:
Annotate-Sample-Average

Distant supervision models such as the emoticon-annotation approach are pop-

ular solutions for training message-level polarity classifiers in the absence

of sentiment-annotated tweets. A lexicon-based distant supervision model is

a particular type of distant supervision approach that exploits prior lexical

knowledge in the form of opinion lexicons.

Polarity lexicons are normally formed by thousands of frequently used words,

so there is a high probability that a tweet contains at least one word from

the lexicon. This means means that lexicon-based distant supervision models

can potentially exploit more unlabelled data than the well known emoticon-

annotation approach because the latter is based on a small number of positive

and negative emoticons.

The partitioned tweet centroid model proposed in Chapter 5 was shown to

be an effective model of this type. In this chapter we propose another lexicon-

based distant supervision method called Annotate-Sample-Average (ASA). ASA

takes a collection of unlabelled tweets and a polarity lexicon composed of pos-

itive and negative words and creates synthetic labelled instances for Twitter

polarity classification. Each labelled training instance is created by sampling

with replacement a number of tweets containing at least one word from the

lexicon with the desired polarity, and averaging the feature vectors of the sam-

pled tweets. This allows the usage of any kind of features for representing the

tweets, e.g., unigrams and part-of-speech tags (POS) tags.

The intuition behind ASA is that a tweet containing a word with a certain

known positive or negative polarity has a certain likelihood of expressing the

same polarity in the whole message. Of course, the opposite polarity may also

be expressed due to the presence of negation, sarcasm, or other opinion words

with the opposite polarity. We propose a hypothesis, which we refer to as the
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“lexical polarity hypothesis”, stating that the first scenario is more likely than

the second one. Based on that, when sampling and averaging multiple tweets

exhibiting at least one word with the desired positive or negative polarity,

we increase the confidence of obtaining a vector located in the region of the

desired polarity.

Most sentiment analysis datasets are imbalanced in favor of positive exam-

ples (Li et al., 2011). This is presumably because users are more likely to

report positive than negative opinions (Guerra et al., 2014). The shortcoming

of training sentiment classifiers from imbalanced datasets is that many classi-

fication algorithms tend to predict test samples as the majority class (Japkow-

icz and Stephen, 2002) when trained from this type of data. A popular way to

address this problem is to rebalance the data by under-sampling the majority

class or by over-sampling the minority class. A noteworthy property of ASA is

that it incorporates a rebalancing mechanism in which balanced training data

can be generated.

We compare classifiers trained with ASA against the same distant supervi-

sion baselines used in Chapter 5: the emoticon-annotation approach and a

simple lexicon-based annotation approach that annotates tweets according to

the polarity of their words. The experimental results show that ASA, with

appropriate choice of the number of tweets averaged for each generated in-

stance, outperforms the other methods in all cases and obtains similar results

to the partitioned tweet centroid model from Chapter 5.

This chapter is organised as follows. In Section 6.1, we describe the pro-

posed ASA method. We discuss the differences between ASA and the tweet

centroid model in Section 6.2. The lexical polarity hypothesis is empirically

studied in Section 6.3. The evaluation of the method is presented in Sec-

tion 6.4. The main results of this chapter are discussed in Section 6.5.

6.1 The Annotate-Sample-Average Algorithm

In this section, we describe the Annotate-Sample-Average (ASA) algorithm for

generating training data for Twitter polarity classification. The method re-

ceives two data inputs: 1) a source corpus, and 2) an opinion lexicon.

The source corpus is a collection of unlabelled tweets C on which the gen-

erated instances are based. The corpus can be built using the public Twitter

API1, which allows the retrieval of public tweets. The tweets must be written

1https://dev.twitter.com/overview/api
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in the same language as the opinion lexicon, and the type of tweets included

in the collection should depend on the type of sentiment classifier intended to

be built. For instance, in order to build a domain-specific sentiment classifier

(e.g., for a political election), the collection should be restricted to tweets as-

sociated with the target domain. This can be done using the Twitter API by

specifying key words, users, or geographical areas. In the following, we focus

on domain-independent polarity classification. Thus, we consider a general

purpose collection of English tweets.

The opinion lexicon L is a list of words labelled by sentiment. In this chapter,

we consider positive and negative words. The positive and negative subsets of

the lexicon are denoted by symbols L+ and L− respectively. Several existing

opinion lexicons can be used here. As was described in Chapter 2, there are

basically two families of lexicons that can be considered:

1. Manually annotated lexicons, in which the sentiment of the words is an-

notated according to human judgements. Crowdsourcing tools such as

Amazon Mechanical Turk can be used to support the annotation (Moham-

mad and Turney, 2013).

2. Automatically-annotated lexicons that are created by automatically ex-

panding a small set of opinion words using relations provided by se-

mantic networks, e.g., synonyms, and antonyms (Kim and Hovy, 2004),

or using statistical associations calculated from document corpora, e.g.,

point-wise mutual information (Turney, 2002).

We observed in Chapter 2 that manually-annotated lexicons tend to be smaller

than the automatically made ones. Conversely, automatically-annotated lexi-

cons are likely to be noisy and may include several neutral words that are

not very useful for polarity classification. In this chapter we use AFINN, the

manually-annotated lexicon that was also used in Chapter 5.

The other parameters of ASA are: a, which determines the number of tweets

to be averaged for each generated instance, p, which corresponds to the num-

ber of positive instances to be generated, n, corresponding to the number of

negative instances, and m, which is a flag specifying how to handle tweets that

contain both positive and negative words.

The tweets from C are preprocessed in the same way as in previous chap-

ters, i.e, tweets are lowercased, and user mentions and URLs are replaced by

special tokens.
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The first step of the algorithm is the annotation phase, in which the tweets

from C are annotated according to the prior sentiment knowledge provided

by the lexicon. Every time a positive word from L+ is found in a message,

the whole tweet is added to a set called posT ; analogously, if a negative word

is found in L−, the tweet is added to a set called negT. Tweets with both

positive and negative words will be discarded if the flag m is set, and will be

simultaneously added to both posT and negT otherwise.

The tweets contained in posT and negT are candidates for building synthetic

labelled instances for training a tweet classifier. The assumption here is that

tweets in each set, positive and negative, are more probable to express the

corresponding polarity than the opposite polarity. This can be explained by

the short length of tweets. As tweets are short straight-to-the-point messages,

the presence of a polarity word has a strong correlation with the overall po-

larity expressed in the message. For example, the tweet: “Hey guess what? I

think you’re awesome” contains the word awesome and is clearly expressing

a positive sentiment. Obviously, there are also tweets with opinion words than

can express the opposite polarity, e.g., “Not happy where I’m at in life”. This

can occur due to several factors such as the presence of other words with the

opposite polarity, negations, or sarcasm. However, we hypothesise that the

first situation is more likely than the second one. We refer to this hypothesis

as the “lexical polarity hypothesis” and we study it empirically in Section 6.3.

We represent all the candidate tweets by vectors of features. We consider

the same features that we used in Chapter 5: 1) Word unigrams (UNI), 2)

Brown clusters (BWN), and 3) Part-of-speech tags (POS).

The second step of ASA is the sampling step. ASA randomly samples with

replacement a tweets from either posT or negT. Next, in the averaging step,

the feature vectors of the sampled tweets are averaged and labelled according

to the polarity of the set from which they were sampled. The rationale behind

this step is that, assuming that the “lexical polarity hypothesis” holds, aver-

aging multiple tweets sampled from the same set increases the confidence of

generating training instances for the tweet classifier that are located in the

region of the desired polarity.

We define the random variable D as the event of sampling a tweet with the

desired positive or negative polarity from either posT or negT. We assume that

D is distributed with a Bernoulli distribution specified by a parameter pd2. We

define another random variable M as the event that the majority of the a ran-

2This parameter is greater than 0.5 if the lexical polarity hypothesis holds.
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Algorithm 6.1.1: ASA algorithm

1 Algorithm ASA(C, L, a, p,n,m)
2 foreach tweet ∈ C do
3 if m and (hasWord(tweet,L+) and hasWord(tweet,L−)) then
4 continue
5 if hasWord(tweet,L+) then
6 tweetVec← extractFeatures(tweet)
7 posT.put(tweetVec)
8 if hasWord(tweet,L−) then
9 tweetVec← extractFeatures(tweet)

10 posN.put(tweetVec)
11 end
12 i← 0
13 while i ≤ p do
14 pInst← sampleAndAverage(posT,a)
15 pInst.label← pos
16 O.put(pInst)
17 i← i+ 1

18 end
19 i← 0
20 while i ≤ n do
21 nInst← sampleAndAverage(negT,a)
22 nInst.label← neg
23 O.put(nInst)
24 i← i+ 1

25 end
26 return O;
1 Procedure sampleAndAverage(T,a)
2 i← 0
3 inst← newZeroVector
4 while i ≤ a do
5 x← randomSample(T)
6 inst← inst + (x/a)
7 i← i+ 1

8 end
9 return inst;

domly sampled tweets from posT or posN have the desired polarity. This is

equivalent to saying that at least ba
2
c + 1 tweets from the sample have the de-

sired positive or negative polarity. If we assume that the tweets in posT and

negT are independent and identically distributed (IID), the probability of M

can be calculated by adding the values of the Binomial probability mass func-

tion from ba
2
c+ 1 to a. This corresponds to adding all the cases in which more
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than the half of the sampled tweets (the majority) have the desired polarity.

This probability is calculated as follows:

P (M) =
a∑

i=ba
2
c+1

(
a

i

)
pid(1− pd)a−i

Note that this value is equivalent to 1 minus the cumulative distribution func-

tion of the Binomial distribution evaluated at ba
2
c. The probabilities of M for

different values of a (a ≥ 3) and pd (pd > 0.5) are shown in Table 6.1.

From the table, we observe that all the calculated probabilities are greater

than pd and generally increase when increasing pd or a (exceptions occur when

switching from an odd to an even number of votes). Thus, assuming the lexical

polarity hypothesis is true and thus pd > 0.5 for posT and negT, we can say

that the majority of the tweets sampled by ASA have the desired polarity with

a probability greater than pd. Moreover, we can expect that the instances

produced by ASA will behave similarly to the majority of the instances they

are obtained from. Thus, compared to sampling individual tweets, we can have

greater confidence that ASA instances will be in the desired polarity region of

the attribute space.

The ideas discussed above are inspired by Condorcet’s Jury Theorem, which

is used in the context of decision making. The theorem states that if a random

individual votes for the correct decision with probability pd > 0.5, the proba-

bility of the majority being correct tends to one when increasing the number

of independent voters. This is a consequence of the law of large numbers, and

as was shown in (Ladha, 1993), the same conclusions can be obtained after

relaxing the independence assumption.

In our problem, each tweet sampled from posT or negT can be interpreted

as a vote for the polarity of the averaged instance. We expect a trade-off in the

value of a. While a small value of a will decrease the confidence of generating

pd = 0.6 pd = 0.7 pd = 0.8 pd = 0.9
a = 3 0.648 0.784 0.896 0.972
a = 5 0.683 0.837 0.942 0.991
a = 10 0.633 0.850 0.967 0.998
a = 50 0.902 0.998 1 1
a = 100 0.973 1 1 1
a = 500 1 1 1 1
a = 1000 1 1 1 1

Table 6.1: Probabilities of sampling a majority of tweets with the desired polarity.
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an instance with the target polarity, a very large value will generate instances

that, despite being likely to have the right label, will be very similar to each

other. This could affect the generalisation ability of the tweet classifier trained

from those instances.

The resulting training dataset O is created by repeating the sampling and

averaging steps p times for the positive class and n times for the negative one.

The pseudo-code of ASA is given in Algorithm 6.1.1.

Setting the flag m in the algorithm will generate polarity instances from

tweets in which words from the opposite polarity are never observed. Con-

sidering that positive and negative tweets are likely to contain words with the

opposite polarity, we expect that unsetting the flag will produce instances with

better generalisation properties. Both setups are compared in Section 6.4.

We use ASA for creating balanced training data by setting p and n to the

same value. This is done to address the sentiment imbalance problem dis-

cussed in (Li et al., 2011): classifiers trained from imbalanced datasets may

have difficulties recognising the minority class. The balancing properties of

ASA are inspired by a well-known resampling technique used for training

classifiers from imbalanced datasets called Synthetic Minority Over-sampling

Technique (SMOTE) (Chawla, Bowyer, Hall and Kegelmeyer, 2002). SMOTE

oversamples the minority class by generating synthetic examples for the mi-

nority class. Each new instance is calculated as a random weighted average

between an existing example of the minority class and one of its nearest neigh-

bours. The similarity between ASA and SMOTE is that both methods generate

new instances by averaging existing ones. The difference is that in ASA the

average is unweighted and can involve more than two examples. Further-

more, ASA does not require calculating the distance between the examples

being averaged. This is a convenient aspect of ASA considering that tweets

are represented by high-dimensional vectors. Another important difference

relates to the type of data used for generating the instances. SMOTE com-

bines labelled instances; ASA combines unlabelled instances annotated using

an opinion lexicon.

6.2 ASA and The Tweet Centroid Model

The tweet centroid model is a generic framework that has been used in this

thesis for three different tasks: 1) polarity lexicon induction from a seed lexi-

con (Chapter 4), 2) polarity lexicon induction from tweets annotated by senti-

ment (Chapter 5), and 3) classifying the sentiment of tweets using word vec-
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tors labelled by a polarity lexicon (Chapter 5). In contrast, ASA is purely a

lexicon-based distant supervision model.

ASA and the partitioned version of the tweet centroid model (when used as

a lexicon-based distant supervision method), share a very important charac-

teristic: they both generate labelled instances by averaging multiple tweet

vectors annotated with a given polarity lexicon.

A difference between the two models is the type of tweets they average.

The training instances produced by the partitioned tweet centroid model are

word vectors created by averaging tweet vectors containing the same word.

ASA, on the other hand, averages tweets from sets posT and negT that do not

necessarily have any word in common.

In terms of implementation, the tweet centroid model requires an inverted

index to map all words from the vocabulary to the tweets in which they occur.

ASA is cheaper to implement since it only maps the two sets posT and negT

to the corresponding tweets with positive and negative words respectively.

The models also differ in the size of the training data they generate. When

the partition size of the partitioned tweet centroid model is set to a small

number (as suggested by the results shown in Table 5.2) and the source cor-

pus is large, the number of generated training instances can be large. This

could be a problem for training models that do not scale well to large training

datasets due to time or memory constrains. ASA on the other hand, allows

unconstrained specification of the number of generated positive and negative

instances. This can be useful for building compact training datasets.

The tweet centroid model ensures that all tweets annotated with the polarity

lexicon are used at least once for building the training instances. ASA is likely

to discard valuable information because it randomly samples tweets from the

sets posT and negT.

Another difference is the label distribution of the datasets the two meth-

ods generate. As positive words occur more frequently than negative ones

(Table 5.1), the partitioned tweet centroid model tends to create unbalanced

training datasets. ASA can easily deal with this problem because it can be

parametrised to generate the same amount of positive and negative instances.

We will observe in Section 6.4, that despite these differences, ASA and the

tweet centroid model produce similar classification performance on tweets

after tuning their corresponding parameters.
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6.3 The Lexical Polarity Hypothesis

The word-tweet sentiment-interdependence relation studied in Chapter 5 tells

us that the sentiment of words and tweets are strongly interrelated. In this

section, we study the hypothesis called “lexical polarity hypothesis” on which

ASA is based. It extends the second part of the word-tweet sentiment-interdependence

relation: the sentiment of a tweet is determined by the sentiment of its words.

The lexical polarity hypothesis encapsulates the idea that, since tweets are

short messages, the presence of a single opinion word is a very strong indica-

tor of the polarity of the message. The hypothesis is expressed in the following

two statements:

1. A tweet containing at least one positive word is more likely to be positive

than negative.

2. A tweet containing at least one negative word is more likely to be negative

than positive.

We study this hypothesis empirically by estimating the probabilities of events

corresponding to these statements using the SemEval corpus of hand-annotated

positive and negative tweets and the AFINN lexicon. We take a balanced sam-

ple of 2000 positive and 2000 negative tweets from SemEval to avoid bias

caused by unevenly distributed tweets and focus the analysis on how the po-

larity of tweets is affected by the polarity of their words. Hence, we calculate

the sets posT and negT from this corpus and study the polarity distribution of

their messages.

We first study the distribution of posT and negT by unsetting the m flag.

Hence, we include tweets with mixed positive and negative words in both sets.

The set postT has 2419 tweets, which corresponds to 60% of the tweets, and

has a distribution of 826 negative and 1593 positive tweets. Thus, the esti-

mated probability of a tweet from posT having a positive polarity is 0.66. The

set negT contains 1774 tweets, corresponding to 44% of the tweets, and has

a distribution of 1354 negative and 420 positive tweets. This gives an esti-

mated probability of 0.76 that a tweet from negT is negative. These results

suggest that negative words are stronger indicators than positive words for

determining the polarity of a tweet.

We also study the distribution of posT and negT after discarding tweets with

mixed positive and negative words (m turned on). In this case, the size of posT

is reduced to 1552 (39% of the total) tweets with a distribution of 284 negative
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and 1268 positive tweets. This gives an estimated probability of 0.817 that a

tweet from posT is positive. The size of negT is reduced to 907 tweets (23%

of the total) with a distribution of 812 negative and 95 positive tweets. This

gives an estimated probability of 0.9 that a tweet from negT is negative.

The polarity distributions of these sets are presented as bar charts in Fig-

ure 6.1. The figure shows how the distributions become more skewed when

removing tweets with mixed positive and negative opinion words.
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Figure 6.1: Polarity distributions of posT and negT.

We also study the distribution of tweets with mixed positive and negative

words. We found 857 such tweets (21% of the total) with a distribution of 542

negative and 325 positive tweets. These numbers also indicate that negative

opinion words have a greater effect than positive words on the polarity of the

tweets in which they occur. However, negative words are also less frequent

than positive ones.

The results obtained in this section support the lexical polarity hypothesis

on which ASA is based. We can conclude that opinion words are indeed strong

indicators of the polarity of tweets. We observed that discarding tweets with

mixed opinion words produces a stronger effect. However, it is important to

bear in mind that discarding these tweets may also cause loss of valuable in-
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formation. The effects of averaging multiple tweets containing opinion words

with the same polarity are investigated in the following section.

6.4 Classification Experiments

In this section, we conduct an experimental evaluation of the proposed ASA

algorithm. We evaluate the performance of classifiers trained with instances

generated by ASA on the same three datasets of hand-annotated tweets that

were used in the other chapters of this thesis: 6HumanCoded, Sanders, and

SemEval.

We consider the same distant supervision baselines used in Chapter 5: the

emoticon-annotation approach (EAA) and the lexicon-annotation approach (LAA).

It is interesting to observe that the positive and negative instances from LAA

are equivalent to the sets posT and negT from ASA when m is turned on.

Considering that positive signals such as positive emoticons or positive opin-

ion words occur more frequently in tweets than their negative counterparts,

we also study balanced versions of EAA and LAA. The balanced baselines are

referred to as EAA_B and LAA_B, and are obtained by undersampling the ma-

jority class in each case.

We again take our unlabelled tweets from the Edinburgh corpus (ED) and

use unigrams, POS tags, and Brown word clusters for representing the tweets

in a feature space.

With the aim of analysing the effect of averaging multiple tweets for building

training instances, we study different values of the a parameter of ASA. We

also study the effect of including or excluding tweets with mixed positive and

negative words by comparing the performance of ASA with the flag m turned

on and off respectively. We create balanced and compact training datasets

with size equal to 1% of the size of the source corpus by setting the parameters

p and n to 0.5% of the source corpus size, corresponding to a subset of the

Edinburgh corpus (see below).

The remainder of the experimental setup is analogous to the one of Chap-

ter 5 for transferring sentiment knowledge from words to tweets. The classi-

fiers are trained using the same logistic regression algorithm taken from LIB-

LINEAR, with the regularisation parameter C set to 1.0, and the tweets from

the target collections are mapped into the same feature space as the tweets

generated by the distant supervision models. We train each distant supervi-

sion ten times on data generated from the same ten independent partitions

of 2 million tweets from the Edinburgh corpus. The average performance of
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each classifier trained with ASA is compared with the average performance of

classifiers trained with each of the four distant supervision baselines 1) EAA,

2) EAA_B, 3) LAA, 4) LAA_B, using a paired Wilcoxon signed-rank test with the

significance value set to 0.05.

As was already shown in Table 5.1, different distant supervision models pro-

duce different numbers of labelled instances from the same corpus of unla-

belled tweets. The average number of positive and negative instances gen-

erated by all the distant supervision schemas evaluated in this chapter are

shown in Table 6.2.

We use the macro-averaged F1 score in addition to the AUC measure used in

Chapter 5 as evaluation criteria. Macro-averaged F1 was used in the SemEval

Twitter sentiment analysis task3.

The comparisons are done for each target collection of tweets and the re-

sults for the macro-averaged F1 score and AUC are given in Table 6.3. The

statistical significance tests of each configuration of ASA with respect to each

of the four baselines are indicated by a sequence of four symbols. Improve-

ments are denoted by a plus (+), degradations by a minus (-), and cases where

no statistical significant difference is observed by an equals (=). The baselines

are also compared amongst each other.

We observe that EAA performs substantially worse than the other baselines

in F1 score. EAA_B performs substantially better than EAA. From Table 6.2

we observe that EAA is the model that produces the most uneven distribution

of positive and negative instance. This suggest that the macro-average F1

score is very sensitive to classifiers trained from heavily imbalanced data. In

contrast, we can note that balancing EAA does not cause any improvement in

AUC. AUC is a more robust measure for classifiers trained from imbalanced

datasets.

Regarding the LAA baseline, we observe a degradation in F1 after balancing

Avg. Positive (%) Avg. Negative (%) Avg. Total (%)
EAA 130, 641 (6.5%) 21, 537 (1.1%) 152, 179 (7.6%)
EAA_B 21, 537 (1.1%) 21, 537 (1.1%) 43, 074 (2.2%)
LAA 681, 531 (34.1%) 294, 177 (14.7%) 975, 708 (48.8%)
LAA_B 294, 177 (14.7%) 294, 177 (14.7%) 588, 354 (29.4%)
ASA 10, 000 (0.5%) 10, 000 (0.5%) 20, 000 (1%)

Table 6.2: Average number of positive and negative instances generated by different
distant supervision models from 10 collections of 2 million tweets.

3http://alt.qcri.org/semeval2016/task4/
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Macro-averaged F1

6HumanCoded Sanders SemEval
EAA_U 0.576 ± 0.007 = - - - 0.506 ± 0.018 = - - - 0.591 ± 0.018 = - - -
EAA_B 0.735 ± 0.008 + = + + 0.709 ± 0.018 + = = = 0.711 ± 0.006 + = - =
LAA_U 0.729 ± 0.004 + - = + 0.711 ± 0.003 + = = + 0.725 ± 0.002 + + = +
LAA_B 0.719 ± 0.002 + - - = 0.703 ± 0.004 + = - = 0.712 ± 0.002 + = - =
ASA (a = 1, m = T ) 0.734 ± 0.005 + = + + 0.721 ± 0.010 + + + + 0.724 ± 0.004 + + = +
ASA (a = 5, m = T ) 0.745 ± 0.005 + + + + 0.723 ± 0.010 + + + + 0.722 ± 0.006 + + = +
ASA (a = 10, m = T ) 0.737 ± 0.003 + = + + 0.703 ± 0.011 + = - = 0.708 ± 0.007 + - - =
ASA (a = 50, m = T ) 0.693 ± 0.003 + - - - 0.643 ± 0.004 + - - - 0.639 ± 0.006 + - - -
ASA (a = 100, m = T ) 0.672 ± 0.004 + - - - 0.620 ± 0.005 + - - - 0.607 ± 0.006 + - - -
ASA (a = 500, m = T ) 0.638 ± 0.004 + - - - 0.599 ± 0.008 + - - - 0.563 ± 0.005 - - - -
ASA (a = 1000, m = T ) 0.635 ± 0.004 + - - - 0.594 ± 0.010 + - - - 0.554 ± 0.003 - - - -
ASA (a = 1, m = F ) 0.717 ± 0.007 + - - = 0.691 ± 0.013 + - - - 0.699 ± 0.008 + - - -
ASA (a = 5, m = F ) 0.755 ± 0.004 + + + + 0.730 ± 0.008 + + + + 0.735 ± 0.005 + + + +
ASA (a = 10, m = F ) 0.761 ± 0.003 + + + + 0.735 ± 0.015 + + + + 0.742 ± 0.006 + + + +
ASA (a = 50, m = F ) 0.749 ± 0.004 + + + + 0.673 ± 0.005 + - - - 0.699 ± 0.009 + - - -
ASA (a = 100, m = F ) 0.717 ± 0.003 + - - - 0.645 ± 0.006 + - - - 0.664 ± 0.005 + - - -
ASA (a = 500, m = F ) 0.665 ± 0.002 + - - - 0.621 ± 0.007 + - - - 0.621 ± 0.004 + - - -
ASA (a = 1000, m = F ) 0.653 ± 0.003 + - - - 0.619 ± 0.007 + - - - 0.613 ± 0.002 + - - -

AUC

6HumanCoded Sanders SemEval
EAA_U 0.805 ± 0.005 = = - - 0.800 ± 0.017 = = + + 0.802 ± 0.006 = + - -
EAA_B 0.809 ± 0.001 = = = = 0.795 ± 0.016 = = + + 0.798 ± 0.007 - = - -
LAA_U 0.809 ± 0.001 + = = = 0.778 ± 0.002 - - = = 0.814 ± 0.000 + + = =
LAA_B 0.809 ± 0.001 + = = = 0.778 ± 0.003 - - = = 0.813 ± 0.001 + + = =
ASA (a = 1, m = T ) 0.806 ± 0.003 = = - - 0.786 ± 0.007 - - + + 0.808 ± 0.002 + + - -
ASA (a = 5, m = T ) 0.809 ± 0.002 = = = = 0.787 ± 0.005 - = + + 0.810 ± 0.003 + + - -
ASA (a = 10, m = T ) 0.804 ± 0.001 = - - - 0.776 ± 0.008 - - = = 0.806 ± 0.003 + + - -
ASA (a = 50, m = T ) 0.756 ± 0.003 - - - - 0.697 ± 0.005 - - - - 0.763 ± 0.002 - - - -
ASA (a = 100, m = T ) 0.729 ± 0.002 - - - - 0.672 ± 0.006 - - - - 0.739 ± 0.002 - - - -
ASA (a = 500, m = T ) 0.696 ± 0.003 - - - - 0.642 ± 0.008 - - - - 0.707 ± 0.005 - - - -
ASA (a = 1000, m = T ) 0.690 ± 0.004 - - - - 0.637 ± 0.008 - - - - 0.701 ± 0.006 - - - -
ASA (a = 1, m = F ) 0.793 ± 0.005 - - - - 0.762 ± 0.016 - - - - 0.787 ± 0.007 - - - -
ASA (a = 5, m = F ) 0.837 ± 0.004 + + + + 0.807 ± 0.010 = = + + 0.833 ± 0.003 + + + +
ASA (a = 10, m = F ) 0.845 ± 0.001 + + + + 0.812 ± 0.015 + + + + 0.840 ± 0.003 + + + +
ASA (a = 50, m = F ) 0.815 ± 0.003 + + + + 0.759 ± 0.006 - - - - 0.810 ± 0.004 + + - -
ASA (a = 100, m = F ) 0.781 ± 0.003 - - - - 0.720 ± 0.007 - - - - 0.779 ± 0.004 - - - -
ASA (a = 500, m = F ) 0.723 ± 0.002 - - - - 0.670 ± 0.008 - - - - 0.729 ± 0.005 - - - -
ASA (a = 1000, m = F ) 0.712 ± 0.002 - - - - 0.665 ± 0.007 - - - - 0.721 ± 0.005 - - - -

Table 6.3: Macro-averaged F1 and AUC measures for different distant supervision
models. Best results per column for each measure are given in bold.

the data (LAA_B). On the other hand, LAA_B performs almost identically to

LAA in AUC. We believe that the reason why balancing is not causing a posi-

tive impact in the lexicon-based approach is that LAA produces a less skewed

distribution of positive and negative instances than EAA. The benefits of re-

sampling are more substantial for F1 for very skewed distributions such as

those produced by EAA.

As was already pointed out in Chapter 5, there is no clear consensus about

which baseline is the best. The baselines based on lexicons perform better
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than the ones based on emoticons when evaluating on SemEval, for both F1

and AUC. On Sanders, the lexicon and the balanced emoticons behave sim-

ilarly in F1, but the emoticons perform better for AUC. On 6HumanCoded,

EAA_B performs better than LAA and LAA_B in F1, but in AUC they produce

almost identical results. It is worth mentioning that the emoticon-based ap-

proach can achieve competitive results to the lexicon-based one even though

it generates substantially less training data (Table 6.2).

Regarding ASA, we observe that the performance achieved by our proposed

method depends on the parameter setting (Table 6.3). When tweets with mixed

positive and negative tweets are discarded (m=T) we observe that the best

results are achieved when very few tweets are averaged. There is a strong

decline in the performance of ASA (m=T) when the value of a is increased.

We believe that this is because instances become too similar when formed by

averaging too many tweets. ASA (m=T) with a=1 is essentially a subsampled

version of LAA_B, and indeed produces very similar results. ASA (m=T) is

not capable of producing statistically significant improvements over the four

baselines for either AUC and F1 score for any dataset, even when considering

the optimum value of a. This suggests that there is no clear contribution in

the sample and average steps of ASA when tweets with mixed positive and

negative tweets are discarded.

On the oher hand, when tweets with mixed positive and negative words are

simultaneously added to both sets (m=F), ASA produces statistically signifi-

cant improvements over all the baselines in all target collections for both F1

and AUC, for appropriate values of a. The best value of a is ten in all three tar-

get collections, for both performance metrics. These results indicate that ASA,

with calibrated parameters, outperforms existing distant supervision models

for Twitter polarity classification. The fact that turning m off is better than

discarding tweets with mixed positive and negative words suggests that mixed

tweets contribute to better generalisation. This is because real positive and

negative tweets are likely to contain words with both polarities.

We clearly observe that setting a to one in ASA (m=F) produces results that

are far from the optimum. This validates the idea that averaging multiple

tweets with at least one word of the same polarity increases the chance of

producing an instance of the desired polarity. We observe again a decline in

performance when the value of a is increased beyond ten.

Based on the numbers in Table 6.2 we use 7.6 and 48.8 times more training

data with EAA and LAA than with ASA respectively. It is noteworthy that ASA
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classifiers outperform the classifiers trained with EAA and LAA even though

they are trained with less data. This shows that ASA can produce a more com-

pact and efficient training dataset than previous distant supervision models.

Moreover, if we compare the AUC values of ASA and TCM from Chapter 5

(when the latter is used as a distant supervision model), after tuning the cor-

responding parameters a and m for ASA and p for TCM (Table 5.2), we observe

that both models are very competitive. Although ASA exhibits a slightly worse

performance, TCM with p set to 20 generates around 5 times more instances

than ASA. This result provides further support that ASA can produce effective

and compact training datasets for Twitter polarity classification.

6.4.1 Sensitivity Analysis

In the previous experiments, the number of instances generated by ASA was

fixed to create balanced datasets whose size was 1% of the size of the source

corpus. In the next experiment, we explore the performance of ASA when ma-

nipulating the number of instances generated for both settings of m and using

different values of a. We use values of a smaller than 20 because large values

of this parameter produced very poor results in the previous experiment. We

train a grid of polarity classifiers on instances generated by ASA from a cor-

pus of 2 million tweets, which are then deployed on the SemEval dataset. The

number of generated instances ranges from 10 thousand to 400 thousand, and

the value of a ranges from 1 to 20. The macro-averaged F1 and AUC scores

obtained by classifiers trained with ASA instances using different values of

a, m, and the number of generated instances, are shown in the heatmaps of

Figure 6.2.

The darker a cell in the heatmap, the higher the performance achieved by

the corresponding configuration of parameters. We observe again that setting

m to false produces higher performance (darker cells) than setting m to true.

In relation to the cells for m=T, we observe that the highest F1 values (dark-

est cell) are when a is equal to 5. We also observe in this setting that most of

the cells are very similar to each other for AUC. Generating less than 20 thou-

sand instances produces brighter cells in several cases in this setting, and

we do not observe substantial improvements when increasing the number of

generated instances beyond 20 thousand.

We observe that setting a to 1 produces poorer results (brighter cells) for

m=F. In general, we observe that turning m off and generating more instances

improves the performance of the classifier for both F1 and AUC.
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Figure 6.2: Heatmap of ASA parameters on the SemEval dataset. The highest F1
value for m=F is 0.76 (a = 10, instances = 200), and for m=T is 0.74
(a = 5, instances = 20). The highest AUC values for m=F and m=T occur
with the same configurations as the highest values for F1 and are 0.85
and 0.81, respectively.

However, the best results are not necessarily obtained when the maximum

number of instances is generated (400 thousand). For example, the best F1

score is achieved with 200 thousand instances.

6.4.2 Learning Curves

We also study the effect of increasing the source corpus size in all different dis-

tant supervision methods: EAA, EAA_B, LAA, LAA_B, and ASA. It is important

to remark that the number of generated instances in the four distant supervi-

sion baselines increases when increasing the size of the source corpus. The

increments are proportional to the percentages shown in Table 6.2.

We trained classifiers using partitions of the source corpus ranging from ten

thousand to ten million tweets. For the ASA model we set a to 10 and m to

false, which were the best parameters according to the previous experiments

(Table 6.3), and kept p and n with values set to 0.005 × |C|, for generating

balanced datasets with size equal to 1% of the size of the source corpus. Thus,

the number of generated instances in ASA is also increased when using a

larger source corpus.

142



6.4 Classification Experiments

The learning curves produced by logistic regressions applied to the SemEval

dataset, trained with data generated using ASA and the four baselines from

source corpora of different sizes, are shown in Figure 6.3. The performance

metrics are again the macro-averaged F1 measure and AUC.
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Figure 6.3: Learning curves for the SemEval dataset.

The figure indicates that most methods increase their performance when

increasing the corpus size, and that these improvements tend to plateau when

using more than 2 million tweets as input. We observe again that EAA exhibits

poor performance in F1 and that balancing this method (EAA_B) produces

substantial improvements for this measure. Surprisingly, the lexicon-based

baselines LAA and LAA_B exhibit a slight decrease in F1 when increasing the

source corpus size after the million tweet mark.

We observe in the initial part of the curves that LAA and LAA_B are the best

distant supervision methods for source corpora smaller than 1 million tweets.

This suggests that the prior knowledge from the lexicon can be very useful

with small collections of data. It is important to note that the setup of ASA for

this experiment generates very few examples when the source corpus is small.
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This can be easily changed by generating more training data when the source

corpus is too small.

We also observe that after passing the million tweet mark, the emoticon-

based models are better than LAA and LAA_B, and that ASA outperforms all

the other models. These results indicate that ASA is a powerful distant su-

pervision model that can be used for training accurate message-level polarity

classifiers without relying on very large collections of unlabelled data.

6.4.3 Qualitative Analysis

In this subsection we explore some tweets classified by ASA. Examples of

tweets from the SemEval corpus classified using ASA, with a = 10 and m = F ,

are given in Table 6.4. The positive and negative words from the AFINN lexi-

con in these tweets are marked with blue and red colours respectively.

Positive Tweets
f(x)=neg Never start working on your dreams and goals tomorrow... tomorrow never comes.... if it means anything to U, ACT NOW! #getafterit

Just did Spartacus 2.0 and sauna. . . imma be sore tomorrow but so worth it
@patrishuhx7 I have English tomorrow but it honestly doesn’t bother me for some reason. Rella always makes my day. Don’t ask

f(x)=pos Happy Valentine’s Day!!! @MAziing: Everyday is the 14th!
Ground hog day is such a good film, Sunday is for food and films #sunday
Going to see Kendrick Lamar with @Pea_Starks in jan :D

Negative Tweets
f(x)=neg Can we just haw class cancelled tomorrow? Cause I really don’t want to go to BCA 101. I’d rather eat worms....

I never had a good time, I sat by my bedside. With papers and poetry about Estella
I got tickets to the NC State game saturday and nobody to go with..

f(x)=pos Wish me lucky on the Cahsee tomorrow I’m pretty nervous
I haven’t talked to you since July 19 th and all you can say is So do you like Beyonce’s new cd GTFO
Being in Amsterdam this early on a friday morning is not my ideal, I just want to get home!

Table 6.4: Examples of tweets classified with ASA. Positive and negative words from
AFINN are marked with blue and red colours respectively. The leftmost
column indicates the classifier’s output.

The classification outputs reveal some insights about the strengths and short-

comings of our method. The correctly classified examples suggest that ASA is

capable of learning sentiment expressions that go beyond the lexicon used in

the annotation phase. This is observed in the second and third negative exam-

ples, and the last positive one, which are all correctly classified even though

they do not contain AFINN words with the same polarity than the correspond-

ing tweet. ASA learns opinion words co-occurring with the words from the lex-

icon, because all words from a tweet are considered in the feature space. This

is an indirect form of polarity lexicon expansion. Regarding the misclassified

examples, we observe that the current implementation of ASA is not capable of

accurately handling complex sentiment patterns involving negations and but

clauses. We attribute these problems to two factors: 1) the annotation phase

is solely based on unigrams, and 2) the current feature space omits the order
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in which words occur. The first factor could be addressed by using a lexicon of

sentiment annotated phrases, and the second one by using more sophisticated

feature representations such as n-grams or paragraph vector-embeddings (Le

and Mikolov, 2014).

6.5 Discussion

We propose a new model called ASA to generate synthetic training data for

Twitter sentiment analysis from unlabelled corpora using the prior knowledge

provided by an opinion lexicon4. The method annotates tweets according to

the polarity of their words, using a given polarity lexicon, and generates bal-

anced training data by sampling and averaging tweets containing words with

the same polarity. ASA is based on the lexical polarity hypothesis: because

tweets are short messages, opinion words are strong indicators of the senti-

ment of the tweets in which they occur, and therefore tweets with at least one

word with a certain known prior polarity are more likely to express the same

polarity on the message level than the opposite one. The sample and average

steps of ASA exploit this hypothesis by increasing the confidence of generat-

ing an instance located in the desired polarity region. ASA also incorporates

a novel way for incorporating the knowledge provided by tweets with mixed

positive and negative words.

The experimental results show that ASA produces better classifiers than the

widely-adopted approach of using emoticons for labelling tweets into polarity

classes and also better results than labelling tweets based on the polarity of

their words, without sampling and averaging. Moreover, classifiers trained

with data generated by ASA achieve competitive results when compared to the

partitioned tweet centroid model presented in Chapter 5, using substantially

less training data. This shows that ASA can generate compact and efficient

datasets for learning polarity concepts.

In the same way as the partitioned tweet centroid model, ASA can be used

for training Twitter polarity classifiers in scenarios without labelled training

data and for creating domain-specific sentiment classifiers by collecting unla-

belled tweets from the target domain.

4The source code of the model is available for download at http://www.cs.waikato.ac.nz/ml/
sa/ds.html#asa.
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Chapter 7

Conclusions

This thesis addresses the problem of classifying tweets into sentiment classes

when labels are scarce. We developed polarity lexicon induction and distant

supervision models aimed at answering the research question stated in Chap-

ter 1:

“Polarity classification of tweets when training data is sparse can be

successfully tackled through Twitter-specific polarity lexicons and lexicon-

based distant supervision.”

All the models proposed in this thesis either attempt to acquire new lexical

knowledge or exploit existing lexical knowledge for analysing the sentiment of

tweets. The word-sentiment association model and the tweet centroid model,

described in Chapters 3 and 4 respectively, focus on the acquisition of lexical

knowledge by automatically inducing Twitter-specific opinion lexicons. The

partitioned version of the tweet centroid model (Chapter 5) and the ASA algo-

rithm (Chapter 6) both exploit lexical knowledge to generate annotated data

for training polarity classifiers from unlabelled tweets.

This chapter provides a summary of the main findings. The chapter is struc-

tured as follows. A summary of the results is provided in Section 7.1. The

main contributions of this thesis are given in Section 7.2. Section 7.3 points

out some possibilites for future work.

7.1 Summary of Results

The main results of this thesis can be stated as follows:

• The proposed word-sentiment association method for polarity lexicon in-

duction studied in Chapter 3 improves on the three-dimensional word-

level polarity classification performance obtained by using PMI-SO alone.
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This is significant because PMI-SO is a state-of-the-art measure for estab-

lishing world-level sentiment.

• As shown in Chapter 3, POS tags are effective features for discriminating

between neutral and non-neutral words.

• The lexicons created with the word-sentiment association method pre-

sented in Chapter 3 achieve significant improvements over SentiWord-

Net when classifying tweets into polarity classes, and also outperform

SentiStrength in most of the experiments. This is significant because

SentiWordNet and SentiStrength are well known resources for sentiment

analysis.

• The tweet centroid model is a better weighting scheme than positive PMI

for building distributional word vectors in the polarity lexicon induction

task (Chapter 4).

• The word-level polarity classification experiments for the tweet centroid

model (Chapter 4) show that representations built from unigram features

and Brown clusters complement each other in a statistically significant

manner.

• The lexicons induced with the word-sentiment association method and

the tweet centroid model produce significant improvements over the seed

lexicon for tweet-level polarity classification (Chapters 3 and 4).

• Low-dimensional word-embeddings are better than distributional word-

level features obtained by averaging tweet-level features when perform-

ing multi-label classification of Twitter words into emotions (Chapter 4).

• The results obtained in Chapter 5 show that the proposed tweet centroid

model is better than PMI-SO for classifying the sentiment of words from

sentiment-annotated tweets.

• The experimental results of Chapter 5 and 6 show that the training datasets

generated by partitioned tweet centroids and ASA (after tuning their

corresponding parameters) produce classifiers that perform significantly

better than a classifier trained from emoticon-annotated tweets and a

classifier trained from tweets annotated according to the polarity of their

words. Furthermore, ASA achieves a similar performance than parti-

tioned tweet centroids using less training data.
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The results listed above suggest that Twitter-specific polarity lexicons and

lexicon-based distant supervision methods can successfully tackle the polarity

classification of tweets when labels are scarce. Therefore, we can conclude

that our research hypothesis is supported by the experimental results.

7.2 Contributions

The main research contributions of this thesis are listed below:

• The finding that two types of word associations calculated from sentiment-

annotated tweets, PMI and SGD, can be effectively combined with POS

tags for classifying words into positive, negative, and neutral sentiment

categories (Chapter 3).

• The proposal of a new version of PMI-SO that can be calculated from

soft-annotated tweets (Chapter 3).

• A new window-free distributional model for building word vectors from

tweets: the tweet-centroid model. This model can be used together with

any message-level feature representation and was shown to work better

than positive PMI for polarity lexicon induction (Chapter 4).

• A new framework for determining word-emotion associations based on

distributional word vectors and multi-label classification that, in contrast

to previous work, does not depend on tweets annotated with emotional

hashtags (Chapter 4).

• A new framework for transferring sentiment knowledge between words

and tweets based on representing them by feature vectors of the same

dimensionality (Chapter 5).

• A new distant supervision approach that builds balanced and compact

training datasets for message-level polarity classification and outperforms

the well-known emoticon-annotation approach (Chapter 6).

In addition to these contributions, there are two reasons that make us be-

lieve that the models developed in this thesis offer a practical framework for

people who are not necessarily part of the NLP community (e.g, journalists,

sociologists) to analyse public opinion from tweets:

1. The source code of all the models is freely available for download and is

integrated into the well known Weka machine learning software.
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2. None of the models depend on tweets that were manually annotated by

sentiment. This allows users to induce polarity lexicons or train message-

level polarity classifiers from any collection of tweets without incurring

the cost of annotating tweets by sentiment.

7.3 Future Work

The results obtained in this thesis open several directions for further research.

In this section we discuss possible extensions to the different models proposed

in this thesis.

7.3.1 Extensions to the Word-Sentiment Association Method

Our supervised framework for lexicon expansion based on word-sentiment as-

sociations and POS tags can be extended in multiple ways. For instance, this

approach could be used for creating a concept-level opinion resource for Twit-

ter by employing word clustering techniques such as the Brown Clustering

method (Brown et al., 1992). We could build the same time series we have

built for words for word clusters, and use the trained classifier for estimating

a sentiment distribution for each word cluster or concept.

We believe that unlabelled words and their feature values could provide valu-

able information that is not being exploited so far. Semi-supervised methods

such as the EM algorithm (Nigam, McCallum and Mitchell, 2006) could be

used to include unlabelled words as part of the training process.

Because our word-level features are based on time series, they could be

easily calculated in an on-line fashion from a stream of time-evolving tweets.

Based on this, we could study the dynamics of opinion words. New opinion

words could be discovered because the change of the distribution in certain

words could be tracked.

7.3.2 Extensions to the Tweet Centroid Model

The current version of the tweet centroid model for polarity lexicon induction

creates large dimensional vectors. Considering that low dimensional dense

vectors trained with word2vec embeddings (Mikolov et al., 2013) produce

better results than the tweet centroid model when performing multi-label

classification of words into emotions (Chapter 4), we would like to explore

low-dimensional projections of the tweet centroid model obtained by training

auto-encoders or restricted Boltzman machines on this representation.
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In a similar way as was proposed for the word-sentiment association method,

we could create time-evolving word-sentiment associations from Twitter streams

using an incremental version of the tweet centroid model. The incremental

version would require updating the counts of the word vectors when new

tweets arrive, and also involve creating new vectors when new words are

found. An efficient way for maintaining these vectors in memory could be

using the Space Saving algorithm (Metwally, Agrawal and El Abbadi, 2005) to-

gether with the adaptive window (ADWIN) (Bifet and Gavaldà, 2007) change

detector as was done in (Bifet et al., 2011).

The lexicon induction would be conducted by training an incremental word

classifier using the vectorial representation of the words to form the feature

space and a seed lexicon L to label the training instances. A strong assump-

tion to be taken here is that the words from the seed lexicon do not change

their polarity over time. The word sentiment classifier would be trained incre-

mentally using stochastic gradient descent (SGD) as was done in Chapter 3,

and would be used to classify the polarity of the unlabelled words observed in

the stream. A pseudo-code of the process is given in Algorithm 7.3.1.

Algorithm 7.3.1: Algorithm for training an incremental polarity lexicon
input : tweetStream, L

1 foreach tweet ∈ tweetStream do
2 words←tokenise(tweet)
3 foreach word ∈ words do
4 updateVector(word)
5 if hasWord(word, L) then
6 updateClassifier(getVector(word),getLabel(word, L))
7

8 end
9 end

In order to track how the polarity of words changes over time we would

need to periodically classify the unlabelled words. A simple approach is to

classify (or re-classify) words every time they appear in a tweet. Alternatively,

we could classify all the unlabelled words at regular intervals. A more sophis-

ticated approach would be to use a change detector, such as ADWIN (Bifet

and Gavaldà, 2007) for each word vector and reclassify words after detecting

a change.
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7.3.3 Extensions to ASA

ASA is a lexicon-based distant supervision model that enables the transfer of

sentiment labels from the word-level to the message-level. Therefore, it could

potentially be used for classifying tweets according to other sentiment labels

associated with words, such as subjectivity labels, numerical scores indicating

sentiment strength, and multi-label emotions.

Considering that ASA can generate large amounts of training data from

large source corpora, it could also be suitable for training deep neural net-

works that learn more sophisticated representations of tweets for sentiment

classification.

Another important aspect of ASA is its flexibility: it can be used with any

kind of features for representing the tweets. For example, paragraph vector-

embeddings (Le and Mikolov, 2014), which have shown to be powerful rep-

resentations for sentences, could be trained from large corpora of unlabelled

tweets and included in the feature space.

Finally, ASA could also be adapted for training incremental polarity classi-

fiers in an on-line fashion from a stream of time-evolving tweets. An incremen-

tal version of ASA would dynamically add tweets with positive and negative

words to the sets posT and negT. These sets would incorporate a forgetting

mechanism to discard old tweets. The training instances would be generated

by periodically sampling and averaging tweets from posT and negT, and these

instances would then be fed to an incremental polarity classifier trained using

SGD or other incremental learning approaches.

This approach could be used for online opinion mining from social media

streams (Bifet and Frank, 2010), and would potentially be useful for track-

ing public opinion regarding high-impact events on Twitter, such as political

campaigns, sports competitions, movie releases and natural disasters.

152



Bibliography

Akcora, C. G., Bayir, M. A., Demirbas, M., Ferhatosmanoglu, H. (2010). Iden-

tifying breakpoints in public opinion. In Proceedings of the First Workshop

on Social Media Analytics, pp. 62–66. New York, NY, USA: ACM.

Amir, S., Ling, W., Astudillo, R., Martins, B., Silva, M. J., Trancoso, I. (2015).

Inesc-id: A regression model for large scale twitter sentiment lexicon induc-

tion. In Proceedings of the 9th International Workshop on Semantic Evalua-

tion, pp. 613–618. Association for Computational Linguistics.

Årup Nielsen, F. (2011). A new ANEW: Evaluation of a word list for sentiment

analysis in microblogs. In Proceedings of the 1st Workshop on Making Sense

of Microposts (#MSM2011), pp. 93–98.

Asur, S., Huberman, B. A. (2010). Predicting the future with social media. In

Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web

Intelligence and Intelligent Agent Technology, vol. 1, pp. 492–499. Washing-

ton, DC, USA: IEEE Computer Society.

Aue, A., Gamon, M. (2005). Customizing sentiment classifiers to new domains:

A case study. Tech. rep., Microsoft Research.

Baccianella, S., Esuli, A., Sebastiani, F. (2010). Sentiwordnet 3.0: An enhanced

lexical resource for sentiment analysis and opinion mining. In Proceedings

of the Seventh International Conference on Language Resources and Evalu-

ation, pp. 2200–2204. European Language Resources Association.

Baeza-Yates, R. A., Rello, L. (2011). How bad do you spell?: The lexical quality

of social media. In Workshop on the Future of the Social Web, pp. 2–5.

Association for the Advancement of Artificial Intelligence.

Bahrainian, S. A., Liwicki, M., Dengel, A. (2014). Fuzzy subjective senti-

ment phrases: A context sensitive and self-maintaining sentiment lexicon.

In Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences

153



Bibliography

on Web Intelligence (WI) and Intelligent Agent Technologies, pp. 361–368.

IEEE Computer Society.

Baroni, M., Dinu, G., Kruszewski, G. (2014). Don’t count, predict! a systematic

comparison of context-counting vs. context-predicting semantic vectors. In

Proceedings of the 52nd Annual Meeting of the Association for Computa-

tional Linguistics, pp. 238–247. Association for Computational Linguistics.

Becker, L., Erhart, G., Skiba, D., Matula, V. (2013). Avaya: Sentiment analysis

on twitter with self-training and polarity lexicon expansion. In Proceedings

of the seventh international workshop on Semantic Evaluation Exercises, pp.

333–340.

Bethard, S., Yu, H., Thornton, A., Hatzivassiloglou, V., Jurafsky, D. (2004). Au-

tomatic extraction of opinion propositions and their holders. In Proceedings

of the AAAI Spring Symposium on Exploring Attitude and Affect in Text: The-

ories and Applications, pp. 20–27. AAAI Press.

Bifet, A., Frank, E. (2010). Sentiment knowledge discovery in twitter stream-

ing data. In Proceedings of the 13th international conference on Discovery

science, pp. 1–15. Springer Berlin Heidelberg.

Bifet, A., Gavaldà, R. (2007). Learning from time-changing data with adaptive

windowing. In Proceedings of the Seventh SIAM International Conference

on Data Mining, pp. 443–448.

Bifet, A., Holmes, G., Pfahringer, B. (2011). MOA-TweetReader: real-time anal-

ysis in twitter streaming data. In International Conference on Discovery

Science, pp. 46–60. Springer Berlin Heidelberg.

Blei, D. M., Ng, A. Y., Jordan, M. I. (2003). Latent dirichlet allocation. Journal

of Machine Learning Research, 3, 993–1022.

Bollen, J., Mao, H., Zeng, X.-J. (2011). Twitter mood predicts the stock market.

Journal of computational science, 2 (1), 1–8.

Bradley, M. M., Lang, P. J. (1999). Affective Norms for English Words (ANEW)

Instruction Manual and Affective Ratings. Tech. rep., The Center for Re-

search in Psychophysiology.

154



Bibliography

Bravo-Marquez, F., Mendoza, M., Poblete, B. (2013). Combining strengths,

emotions and polarities for boosting twitter sentiment analysis. In Proceed-

ings of the Second International Workshop on Issues of Sentiment Discovery

and Opinion Mining, pp. 10–19. ACM.

Bravo-Marquez, F., Mendoza, M., Poblete, B. (2014). Meta-level sentiment

models for big social data analysis. Knowledge-Based Systems, 69, 86 – 99.

Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V. J. D., Lai, J. C. (1992).

Class-based n-gram models of natural language. Computational linguistics,

18 (4), 467–479.

Calais Guerra, P. H., Veloso, A., Meira Jr, W., Almeida, V. (2011). From bias

to opinion: a transfer-learning approach to real-time sentiment analysis. In

Proceedings of the 17th ACM SIGKDD international conference on Knowl-

edge discovery and data mining, pp. 150–158. ACM.

Cambria, E. (2016). Affective computing and sentiment analysis. IEEE Intelli-

gent Systems, 31 (2), 102–107.

Cambria, E., Hussain, A. (2015). Sentic Computing: A Common-Sense-

Based Framework for Concept-Level Sentiment Analysis. Cham, Switzer-

land: Springer International Publishing.

Cambria, E., Livingstone, A., Hussain, A. (2012). The hourglass of emotions.

In Cognitive Behavioural Systems, vol. 7403 of Lecture Notes in Computer

Science, pp. 144–157. Springer Berlin Heidelberg.

Carvalho, P., Sarmento, L., Silva, M. J., de Oliveira, E. (2009). Clues for detect-

ing irony in user-generated contents: oh...!! it’s "so easy" ;-). In Proceeding

of the 1st international CIKM workshop on Topic-sentiment analysis for mass

opinion, pp. 53–56. New York, NY, USA: ACM.

Castellucci, G., Croce, D., Basili, R. (2015). Acquiring a large scale polarity

lexicon through unsupervised distributional methods. In International Con-

ference on Applications of Natural Language to Information Systems, pp.

73–86. Springer Berlin Heidelberg.

Ceron, A., Curini, L., Iacus, S. M., Porro, G. (2014). Every tweet counts? how

sentiment analysis of social media can improve our knowledge of citizens’

political preferences with an application to italy and france. New Media &

Society, 16 (2), 340–358.

155



Bibliography

Chang, C.-C., Lin, C.-J. (2011). LIBSVM: A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, 2 (3), 1–27.

Chawla, N. V., Bowyer, K. W., Hall, L. O., Kegelmeyer, W. P. (2002). SMOTE:

Synthetic minority over-sampling technique. Journal of Artificial Intelligence

Research, 16 (1), 321–357.

Church, K. W., Hanks, P. (1990). Word association norms, mutual information,

and lexicography. Computational Linguistics, 16 (1), 22–29.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational

and Psychological Measurement, 20, 37–46.

Collobert, R., Weston, J. (2008). A unified architecture for natural language

processing: Deep neural networks with multitask learning. In Proceedings of

the 25th international conference on Machine learning, pp. 160–167. ACM.

Crammer, K., Singer, Y. (2002). On the algorithmic implementation of multi-

class kernel-based vector machines. Journal of Machine Learning Research,

2, 265–292.

Das, D., Kolya, A. K., Ekbal, A., Bandyopadhyay, S. (2011). Temporal analysis

of sentiment events: a visual realization and tracking. In Proceedings of the

12th international conference on Computational linguistics and intelligent

text processing, pp. 417–428. Springer Berlin Heidelberg.

De Choudhury, M., Sundaram, H., John, A., Seligmann, D. D. (2008). Can blog

communication dynamics be correlated with stock market activity? In Pro-

ceedings of the nineteenth ACM conference on Hypertext and hypermedia,

pp. 55–60. ACM.

Dodds, P., Danforth, C. (2010). Measuring the happiness of large-scale written

expression: Songs, blogs, and presidents. Journal of Happiness Studies,

11 (4), 441–456.

Durant, K. T., Smith, M. D. (2007). The impact of time on the accuracy of

sentiment classifiers created from a web log corpus. In Proceedings of the

Twenty-Second AAAI Conference on Artificial Intelligence, pp. 1340–1346.

AAAI Press.

Ekman, P. (1992). An argument for basic emotions. Cognition & emotion,

6 (3-4), 169–200.

156



Bibliography

Engström, C. (2004). Topic Dependence in Sentiment Classification. Master’s

thesis, University of Cambridge.

Esuli, A., Sebastiani, F. (2005). Determining the semantic orientation of

terms through gloss classification. In Proceedings of the 14th ACM Inter-

national Conference on Information and Knowledge Management, pp. 617–

624. ACM.

Esuli, A., Sebastiani, F. (2006). Sentiwordnet: A publicly available lexical

resource for opinion mining. In In Proceedings of the 5th Conference on

Language Resources and Evaluation, pp. 417–422. European Language Re-

sources Association.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J. (2008). Liblinear: A

library for large linear classification. Journal of Machine Learning Research,

9, 1871–1874.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Let-

ters, 27 (8), 861–874.

Foster, J., Cetinoglu, O., Wagner, J., Le Roux, J., Nivre, J., Hogan, D., van Gen-

abith, J. (2011). From news to comment: Resources and benchmarks for

parsing the language of web 2.0. In Proceedings of 5th International Joint

Conference on Natural Language Processing, pp. 893–901. Asian Federation

of Natural Language Processing.

Gayo-Avello, D. (2011). Don’t turn social media into another ’literary digest’

poll. Communications of the ACM, 54 (10), 121–128.

Gayo-Avello, D. (2013). A meta-analysis of state-of-the-art electoral prediction

from twitter data. Social Science Computer Review, 31 (6), 649–679.

Gimpel, K., Schneider, N., O’Connor, B., Das, D., Mills, D., Eisenstein, J., Heil-

man, M., Yogatama, D., Flanigan, J., Smith, N. A. (2011). Part-of-speech

tagging for twitter: Annotation, features, and experiments. In Proceedings

of the 49th Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies, vol. 2, pp. 42–47. Association for Computa-

tional Linguistics.

Glorot, X., Bordes, A., Bengio, Y. (2011). Domain adaptation for large-scale

sentiment classification: A deep learning approach. In Proceedings of the

28th International Conference on Machine Learning, pp. 513–520.

157



Bibliography

Go, A., Bhayani, R., Huang, L. (2009). Twitter sentiment classification using

distant supervision. Tech. rep., Stanford University.

Gonçalves, P., Araújo, M., Benevenuto, F., Cha, M. (2013). Comparing and

combining sentiment analysis methods. In Proceedings of the First ACM

Conference on Online Social Networks, pp. 27–38. ACM.

Granger, C. W. (1969). Investigating causal relations by econometric models

and cross-spectral methods. Econometrica: Journal of the Econometric So-

ciety, pp. 424–438.

Guerra, P. C., Meira, W., Jr., Cardie, C. (2014). Sentiment analysis on evolving

social streams: How self-report imbalances can help. In Proceedings of the

7th ACM International Conference on Web Search and Data Mining, pp. 443–

452. ACM.

Guo, W., Li, H., Ji, H., Diab, M. T. (2013). Linking tweets to news: A framework

to enrich short text data in social media. In Proceedings of the 51st An-

nual Meeting of the Association for Computational Linguistics, pp. 239–249.

Association for Computational Linguistics.

Hamilton, W. L., Clark, K., Leskovec, J., Jurafsky, D. (2016). Inducing domain-

specific sentiment lexicons from unlabeled corpora. In Proceedings of the

2016 Conference on Empirical Methods in Natural Language Processing, pp.

595–605. The Association for Computational Linguistics.

Harris, Z. (1954). Distributional structure. Word, 10 (23), 146–162.

Hatzivassiloglou, V., McKeown, K. R. (1997). Predicting the semantic orienta-

tion of adjectives. In Proceedings of the 35th Annual Meeting of the Associ-

ation for Computational Linguistics, pp. 174–181. Association for Computa-

tional Linguistics.

Hatzivassiloglou, V., Wiebe, J. M. (2000). Effects of adjective orientation and

gradability on sentence subjectivity. In Proceedings of the 18th Conference

on Computational Linguistics - Volume 1, pp. 299–305. Stroudsburg, PA,

USA: Association for Computational Linguistics.

Hu, M., Liu, B. (2004). Mining and summarizing customer reviews. In Pro-

ceedings of the tenth ACM SIGKDD international conference on Knowledge

discovery and data mining, pp. 168–177. New York, NY, USA: ACM.

158



Bibliography

Hu, Y., Talamadupula, K., Kambhampati, S. (2013). Dude, srsly?: The sur-

prisingly formal nature of twitter’s language. In Proceedings of the Seventh

International Conference on Weblogs and Social Media, pp. 244–253. AAAI

Press.

Jansen, B. J., Zhang, M., Sobel, K., Chowdury, A. (2009). Twitter power: Tweets

as electronic word of mouth. Journal of the American Society for Information

Science and Technology, 60 (11), 2169–2188.

Japkowicz, N., Stephen, S. (2002). The class imbalance problem: A systematic

study. Intelligent Data Analysis, 6 (5), 429–449.

Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T. (2011). Target-dependent twitter

sentiment classification. In Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human Language Technologies,

pp. 151–160. Association for Computational Linguistics.

Jungherr, A., Jurgens, P., Schoen, H. (2011). Why the Pirate Party Won the

German Election of 2009 or The Trouble With Predictions: A Response to

Tumasjan, A., Sprenger, T. O., Sander, P. G., & Welpe, I. M. "Predicting Elec-

tions With Twitter: What 140 Characters Reveal About Political Sentiment".

Social Science Computer Review, pp. 1–6.

Jurafsky, D., Martin, J. H. (2008). Speech and Language Processing: An In-

troduction to Natural Language Processing, Computational Linguistics, and

Speech Recognition. Upper Saddle River, NJ, USA: Prentice Hall, 2nd edn.

Kamps, J., Marx, M., Mokken, R. J., De Rijke, M. (2004). Using WordNet to

Measure Semantic Orientation of Adjectives. In Proceedings of the Interna-

tional Conference on Language Resources and Evaluation, vol. 4, pp. 1115–

1118. European Language Resources Association.

Kim, S.-M., Hovy, E. (2004). Determining the sentiment of opinions. In Pro-

ceedings of the 20th international conference on Computational Linguistics.

Stroudsburg, PA, USA: Association for Computational Linguistics.

Kiritchenko, S., Zhu, X., Mohammad, S. M. (2014). Sentiment analysis of short

informal texts. Journal of Artificial Intelligence Research, 50, 723–762.

Koppel, M., Schler, J. (2006). The importance of neutral examples for learning

sentiment. Computational Intelligence, 22 (2), 100–109.

159



Bibliography

Kouloumpis, E., Wilson, T., Moore, J. (2011). Twitter sentiment analysis: The

good the bad and the omg! In Fifth International AAAI Conference on We-

blogs and Social Media, vol. 11, pp. 538–541. AAAI Press.

Ladha, K. K. (1993). Condorcet’s jury theorem in light of de Finetti’s theorem.

Social Choice and Welfare, 10 (1), 69–85.

Le, Q. V., Mikolov, T. (2014). Distributed representations of sentences and

documents. In Proceedings of the 31th International Conference on Machine

Learning, pp. 1188–1196.

Li, S., Wang, Z., Zhou, G., Lee, S. Y. M. (2011). Semi-supervised learning for im-

balanced sentiment classification. In Proceedings of the Twenty-Second In-

ternational Joint Conference on Artificial Intelligence, pp. 1826–1831. AAAI

Press.

Li, T., Zhang, Y., Sindhwani, V. (2009). A non-negative matrix tri-factorization

approach to sentiment classification with lexical prior knowledge. In Pro-

ceedings of the Joint Conference of the 47th Annual Meeting of the ACL and

the 4th International Joint Conference on Natural Language Processing of

the AFNLP, pp. 244–252. Stroudsburg, PA, USA: Association for Computa-

tional Linguistics.

Lin, C., He, Y. (2009). Joint sentiment/topic model for sentiment analysis. In

Proceedings of the 18th ACM Conference on Information and Knowledge

Management, pp. 375–384. New York, NY, USA: ACM.

Lin, C.-J., Weng, R. C., Keerthi, S. S. (2008). Trust region newton method for

logistic regression. Journal of Machine Learning Research, 9, 627–650.

Liu, B. (2009). Web Data Mining: Exploring Hyperlinks, Contents, and Usage

Data. Springer.

Liu, B. (2010). Sentiment analysis and subjectivity. In Handbook of Natural

Language Processing, Second Edition. Boca Raton, FL: CRC Press, Taylor

and Francis Group.

Liu, B. (2012). Sentiment Analysis and Opinion Mining. Synthesis Lectures on

Human Language Technologies. Morgan & Claypool Publishers.

Liu, K.-L., Li, W.-J., Guo, M. (2012). Emoticon smoothed language models for

twitter sentiment analysis. In Proceedings of the Twenty-Sixth AAAI Confer-

ence on Artificial Intelligence, pp. 1678–1684. AAAI Press.

160



Bibliography

Liu, Y., Huang, X., An, A., Yu, X. (2007). ARSA: a sentiment-aware model

for predicting sales performance using blogs. In Proceedings of the 30th

annual international ACM SIGIR conference on Research and development

in information retrieval, pp. 607–614. ACM.

Logunov, A., Panchenko, V. (2011). Characteristics and predictability of twit-

ter sentiment series. In 19th International Congress on Modeling and

Simulation–Sustaining Our Future: Understanding and Living with Uncer-

tainty.

Manning, C. D., Raghavan, P., Schütze, H. (2008). Introduction to Information

Retrieval. New York, NY, USA: Cambridge University Press.

Mei, Q., Ling, X., Wondra, M., Su, H., Zhai, C. (2007). Topic sentiment mix-

ture: modeling facets and opinions in weblogs. In Proceedings of the 16th

international conference on World Wide Web, pp. 171–180. ACM.

Melville, P., Gryc, W., Lawrence, R. D. (2009). Sentiment analysis of blogs by

combining lexical knowledge with text classification. In Proceedings of the

15th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pp. 1275–1284. ACM.

Metaxas, P. T., Mustafaraj, E., Gayo-avello, D. (2011). How (not) to predict

elections. In Proceedings of Third International Conference on Social Com-

puting, pp. 165–171. IEEE Computer Society.

Metwally, A., Agrawal, D., El Abbadi, A. (2005). Efficient computation of fre-

quent and top-k elements in data streams. In International Conference on

Database Theory, pp. 398–412. Springer Berlin Heidelberg.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. In Ad-

vances in Neural Information Processing Systems, pp. 3111–3119. Curran

Associates, Inc.

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K. (1990). Wordnet:

An on-line lexical database. International Journal of Lexicography, 3, 235–

244.

Mintz, M., Bills, S., Snow, R., Jurafsky, D. (2009). Distant supervision for re-

lation extraction without labeled data. In Proceedings of the Joint Confer-

ence of the 47th Annual Meeting of the ACL and the 4th International Joint

161



Bibliography

Conference on Natural Language Processing of the AFNLP, pp. 1003–1011.

Stroudsburg, PA, USA: Association for Computational Linguistics.

Mishne, G., de Rijke, M. (2006). Moodviews: Tools for blog mood analysis. In

AAAI Symposium on Computational Approaches to Analysing Weblogs, pp.

153–154. AAAI Press.

Mishne, G., Glance, N. (2006). Predicting movie sales from blogger sentiment.

In AAAI Symposium on Computational Approaches to Analysing Weblogs,

pp. 155–158. AAAI Press.

Mishne, G., de Rijke, M. (2006). Capturing global mood levels using blog posts.

In AAAI Symposium on Computational Approaches to Analysing Weblogs, pp.

145–152. AAAI Press.

Mohammad, S., Turney, P. D. (2013). Crowdsourcing a word-emotion associa-

tion lexicon. Computational Intelligence, 29 (3), 436–465.

Mohammad, S. M. (2012). #Emotional tweets. In Proceedings of the Sixth

International Workshop on Semantic Evaluation, pp. 246–255. Association

for Computational Linguistics.

Mohammad, S. M., Kiritchenko, S. (2015). Using hashtags to capture fine

emotion categories from tweets. Computational Intelligence, 31 (2), 301–

326.

Mohammad, S. M., Kiritchenko, S., Zhu, X. (2013). NRC-Canada: Building

the state-of-the-art in sentiment analysis of tweets. In Proceedings of the

seventh international workshop on Semantic Evaluation Exercises, pp. 321–

327. Association for Computational Linguistics.

Nadeau, C., Bengio, Y. (2003). Inference for the generalization error. Machine

Learning, 52 (3), 239–281.

Nakov, P., Rosenthal, S., Kozareva, Z., Stoyanov, V., Ritter, A., Wilson, T. (2013).

Semeval-2013 task 2: Sentiment analysis in twitter. In Proceedings of the

seventh international workshop on Semantic Evaluation Exercises, pp. 312–

320. Atlanta, Georgia, USA: Association for Computational Linguistics.

Nigam, K., McCallum, A., Mitchell, T. (2006). Semi-supervised text classifica-

tion using em. Semi-Supervised Learning, pp. 33–56.

162



Bibliography

O’Connor, B., Balasubramanyan, R., Routledge, B. R., Smith, N. A. (2010).

From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series.

In Proceedings of the Fourth International AAAI Conference on Weblogs and

Social Media, pp. 122–129. AAAI Press.

O’Reilly, T. (2007). What is web 2.0: Design patterns and business models for

the next generation of software. Communications & strategies, pp. 17–37.

Pak, A., Paroubek, P. (2010). Twitter as a corpus for sentiment analysis and

opinion mining. In Proceedings of the Seventh International Conference on

Language Resources and Evaluation, pp. 1320–1326. European Language

Resources Association.

Pan, S. J., Yang, Q. (2010). A survey on transfer learning. IEEE Transactions

on Knowledge and Data Engineering, 22 (10), 1345–1359.

Pang, B., Lee, L. (2005). Seeing stars: exploiting class relationships for senti-

ment categorization with respect to rating scales. In Proceedings of the 43rd

Annual Meeting on Association for Computational Linguistics, pp. 115–124.

Stroudsburg, PA, USA: Association for Computational Linguistics.

Pang, B., Lee, L. (2008). Opinion mining and sentiment analysis. Foundations

and Trends in Information Retrieval, 2, 1–135.

Pang, B., Lee, L., Vaithyanathan, S. (2002). Thumbs up? Sentiment classifi-

cation using machine learning techniques. In Proceedings of the 2002 Con-

ference on Empirical Methods in Natural Language Processing, pp. 79–86.

Association for Computational Linguistics.

Parrot, W. G. (2001). Emotions in social psychology: Essential readings. Psy-

chology Press.

Pennington, J., Socher, R., Manning, C. D. (2014). Glove: Global vectors for

word representation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing, pp. 1532–1543. Association for

Computational Linguistics.
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