
DOCODE-Lite: A Meta-Search Engine

for Document Similarity Retrieval

Felipe Bravo-Marquez1, Gaston L’Huillier1, Sebastián A. Rı́os1,
Juan D. Velásquez1, and Luis A. Guerrero2

1 University of Chile, Department of Industrial Engineering, Santiago, Chile
{fbravo,glhuilli}@dcc.uchile.cl, {srios,jvelasqu}@dii.uchile.cl
2 University of Chile, Department of Computer Science, Santiago, Chile

luguerre@dcc.uchile.cl

Abstract. The retrieval of similar documents from large scale datasets
has been the one of the main concerns in knowledge management envi-
ronments, such as plagiarism detection, news impact analysis, and the
matching of ideas within sets of documents. In all of these applications, a
light-weight architecture can be considered as fundamental for the large
scale of information needed to be analyzed. Furthermore, the relevance
score for documents retrieval can be significantly improved using several
previously built search engines and taking into account the relevance
feedback from users. In this work, we propose a web-services architec-
ture for the retrieval of similar documents from the web. We focus on
software engineering to support the manipulation of users’ knowledge
into the retrieval algorithm. An human evaluation for the relevance feed-
back of the system over a built set of documents is presented, showing
that the proposed architecture can retrieve similar documents by using
the main search engines. In particular, the document plagiarism detec-
tion task was evaluated, for which its main results are shown.

Keywords: Meta-Search architecture, Plagiarism Detection, Random
Query Generation, Document Similarity Retrieval, SOA.

1 Introduction

The access to massive amount of information is considered as one of the main
potentials of the Internet, in particular for educational institutions [9]. However,
this access can lead to problems such as document plagiarism, that unfortunately
has taken leadership in our today’s society. Furthermore, in the educational
context, the massification of the Web and search engines, has contributed to
access large bibliographic contents, much larger than the generally needed for
their assignments.

Likewise, reviewers’ task for authenticity checking in delivered documents,
has been compromised. This phenomenon is presented in both educational insti-
tutions as well as the academic environment, where scientific contributions are
constantly being delivered. The mechanism that most reviewers has adopted for

R. Setchi et al. (Eds.): KES 2010, Part II, LNAI 6277, pp. 93–102, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

94 F. Bravo-Marquez et al.

authenticity checking, is to search for the suspicious extract of the document
in a search engine. Then, checking all results, the original document manually
searched in all retrieved documents. This process can take large amounts of time,
and the detection of malicious activities is not guaranteed.

A solution to this, is to develop a web crawler that indexes the complete
document from a given seed of URLs. Then after a dataset of documents is in-
dexed, search mechanisms could be used for document similarity evaluation from
within this set of documents. Unfortunately, resources needed to the crawler and
indexing steps are difficult to get. A second alternative is to submit the whole
document in a search engine. Unfortunately, search engines admits a fixed num-
ber of characters in their queries, for which the document needs to be chopped
into several parts, and then delivered in parts to the search engine, which leads
to the same reviewer problem stated in the latter.

This work’s contribution is an information system architecture that given a
text passage source, using different search engines, retrieves from the Web similar
documents from this source. Furthermore, the proposed knowledge management
system is based on a web service architecture and developed using Object Ori-
ented Programming (OOP), for which it is highly scalable and extensible to new
information retrieval requirements.

This paper is structured as follows: In section 2, previous work on knowledge
management information systems for plagiarism detection using meta-search en-
gine architectures is presented. Then, in section 3, the main contribution of this
work and proposed architecture is described. In section 4 the experimental setup
and results are presented. Finally in section 5, the main conclusions of this paper
and in section 6 future work is detailed.

2 Previous Work

As described in [8], meta search engines provides a single unified interface, where
a user enters an specific query, the engine forwards it in parallel to a given list
of search engines, and results are collated and ranked into a single list. Several
of these approaches have been developed in [1,10,11].

In [6] the idea of exploiting directly the scores of each search engine is pro-
posed, where the main information is the relative rank of each result. In [1], dif-
ferent ranking approaches are analyzed, for example Borda-fuse which is based
on democratic voting, the Borda count, or the weighted borda-fuse, in which
search engines are not treated equally. The document similarity retrieving prob-
lem has been studied by different researchers [4,12]. These approaches propose
fingerprinting techniques for document representation into sets of relevant terms.
Also, these approaches uses meta search engine architectures for retrieving an
extended list of similar candidate documents. On the one hand, in [12] docu-
ment snippets are retrieved from search engines and compared with the query
document using cosine similarity from their Vector Space Model [7]. The pre-
vious process is deployed in a collaborative Service Oriented Architecture (SOA),

DOCODE-Lite: A Meta-Search Engine for Document Similarity Retrieval 95

where multiple services for search result analysis are developed in a modular
and flexible architecture. On the other hand, Pereira and Ziviani [4] proposes
to retrieve the complete text from each web document, comparing them with
the query document using text comparison strategies, like Patricia trees and k-
grams or shingles method. Non of these techniques’ approach have used the user
knowledge to enhance results.

3 DOCODE-Lite

In the following, the proposed architecture for document similarity retrieval from
web documents is presented. Firstly, all the components and processes are de-
scribed with their respective interactions. Secondly, the query generating process
and the metasearch scoring function are described. Finally, all software engi-
neering components are detailed in order to show how the architecture can be
constructed and deployed.

3.1 Web Service Architecture

In order to allow a flexible communication with other applications, the system
was developed as a Web Service. We used in its implementation the Axis2 1.5
Web Services/WSDL/SOAP engine. The DOCODE-lite architecture (Fig. 1) is
determined by different components. Each one is responsible to handle different
tasks of document similarity retrieval problem, whose interaction is described as
follows:

The process starts with an input paragraph and finishes with a ranked list of
web documents output. These documents are candidates from input paragraph
and scored by their similarity.

The input is converted in a set of queries, which are generated by a random-
ized process, that gives higher probabilities of occurrence to the more relevant
terms. This queries are sent in parallel to a customizable list of search engines.

Fig. 1. DOCODE-lite SOA client and server for similar document retrieval

96 F. Bravo-Marquez et al.

The search instances results are collated and scored using their local ranks, the
number of appearances, and search engines reliability parameters. Finally, re-
trieved documents are ranked by this score, stored in a data base model, and
returned to the Web Service Client. The user interface also allows the user to
evaluate the relevance of results. This evaluations are stored in the database for
a posterior effectiveness evaluation.

The reason of developing the system as a Web Service, is to inter-operate with
different systems, where the needed service is independent to our user interface.
Therefore, batch document processing tasks can be executed directly by using
the proposed architecture.

3.2 Document Fingerprinting Model and Meta Search Scoring
Function

The query generation process from a paragraph is based on a randomized fin-
gerprinting model. The process starts with the extraction of the document vo-
cabulary and the assignment of term extraction probabilities, calculated using
customizable weighting approaches like tf, tf-idf, among others. These weights
are normalized in order to satisfy the probability normalization constraint. Af-
terwards, we proceed to construct our queries by the concatenation of successive
randomized term extractions. Terms are extracted without replacement in order
to increment the occurrence probabilities of the others. The length of queries is
also customizable, understanding that short queries achieved very fast retrieval
times in search engines as stated in [3].

This process aims to represent relevant information from the given document
in a set of queries. All queries are sent to the list of search engines, whose results
associated to the same URLs are gathered. Each single result ω is defined a a
tuple (s, q, r) where s is the used search engine, q the requested query, and r the
rank in which the result has appeared. A collated result set Ω is defined as a set
of single results which point to the same URL. The scoring function for these
results is defined as follows:

score(Ω) =
1
N

∑

ω∈Ω

cs(ω)

(rω)βs(ω)
(1)

Where N is the number of requested queries and c, β represents confidence
factors in the search engine s. The c ∈ [0, 1] is a constant which represents the
average relevance of the best response of a Web search engine s, and β represents
the decay factor of the results’ relevance while increasing the amount of results
retrieved. This score measure, aims to estimate the relevance of the collated
result using its local ranks and the Web search engine reliabilities.

This strategy is inspired in the idea that, if an URL appears many times and
in higher ranks, the probability that the pointed document is related to the given
document from which the query was generated should by high.

DOCODE-Lite: A Meta-Search Engine for Document Similarity Retrieval 97

3.3 Software Design and Architecture Engineering

As presented in the class diagram1, Fig. 2, previously described components
are modeled with an object oriented programming approach. DocodeLiteSer-
vice class receives as constructor input the document as string, the Search en-
gines list, and the number of queries to generate. Queries are generated in a
QueryGenerator object instance and used to build a MetaSearch object.
This object creates instances of Search objects with their respective list of
search engines, and the generated queries as their constructor signature. Each
Search Engine must be implemented according to abstract class Search in-
heritance. The MetaSearch object creates Search instances using the meta-
programming reflection paradigm, which allows to create a class instance by only
having their class name and constructor parameters. Each Search instance must
request the assigned query to the Search Engine and create the QueryAnswer
instance for each result. The QueryAnswer object (ω) has as instance vari-
ables the pointed web document url, its title, and its local rank of occurrence.
The MetaSearch object collates and aggregates QueryAnswers when they
point to the same url. The aggregation process is supported with a Hashmap
data structure, mapping each url to a single MetaAnswer (Ω), whose score
(Eq. 1) is determined by the QueryAnswer instances variables. Finally, the
DocodeLiteService picks all MetaAnswers and returns them to the Web
Service client.

Fig. 2. Class diagram for DOCODE-lite software architecture

1 Unified Modeling Language: http://www.uml.org/

http://www.uml.org/

98 F. Bravo-Marquez et al.

4 Experiments and Results

In present section, all parameters used in this research are introduced, for which
different information retrieval options are discussed. Finally, the evaluation
mechanism from which the architecture can be evaluated is presented.

According to the previously described architecture, a prototype was imple-
mented. It was developed in the Java programming language (JDK 1.6.0), pro-
viding a JavaServer Pages (JSP) user interface, mounted in Apache Tomcat 6.0
Servlet Container. The JSP user interface includes a text area for the input text,
and a relevance FeedBack button for each result responded, which allows the
user to evaluate the results’ relevance. The query generation algorithm was im-
plemented with the Apache Lucene (2.9.0) Framework using a term frequency
weighting approach and a stopwords’ list.

The input area allows a user to insert a text without length constraints. How-
ever, If the whole document is considered as input, this could increase the num-
ber of non relevant pages retrieved, because of the randomized query generation
process. Therefore, we recommend to use a single paragraph instead of a whole
document. Since it is a self-contained independent information unit.

A database model was designed to store relevant information for process anal-
ysis (Parameters, Input Paragraph, Search Engines, MetaAnswers, and QueryAn-
swers) and its results (Ranking, Scores, Relevance Feedback, and URLs),
presented by the usage of the system and deployed in MySQL 5.1.372.

4.1 Experimental Setup

A hand-crafted set of paragraphs were extracted from a sample of web docu-
ments. For this, a total number of 160 paragraphs were selected from different
Spanish written web sites. The respective URL was stored and classified into
three different document types: bibliographic documents or school essays (type
1), blog entries or personal web pages (type 2), and news (type 3).

After this paragraphs were sent to the system as input. The top 15 answers
from each paragraph search were manually reviewed and classified as relevant
or non relevant results. The criteria to label an answer as relevant was defined
that the retrieved document must contain the given paragraph exactly3.

The table 1 shows the numbers of paragraphs, generated queries and retrieved
documents per label.

The selected search engines for the experiments were Google, Yahoo!, and
Bing. The parameters used for each search engine for the query generation and
the ranking procedures, as well as their formal estimation have been intentionally
omitted.

2 This database is freely available to download in
http://dcc.uchile.cl/~fbravo/docode/dbcorpus.sql

3 This corpus can be downloaded from
http://dcc.uchile.cl/~fbravo/docode/corpus.xml

http://dcc.uchile.cl/~fbravo/docode/dbcorpus.sql
http://dcc.uchile.cl/~fbravo/docode/corpus.xml

DOCODE-Lite: A Meta-Search Engine for Document Similarity Retrieval 99

Table 1. Number of paragraphs, queries, and retrieved documents for each type, used
in the evaluation procedure

- Type 1 Type 2 Type 3 All Types

Paragraphs 77 53 30 160
Generated Queries 539 371 210 1120

Retrieved Documents 1155 795 450 2400

4.2 Evaluation Criteria

The goal of this experiment is to measure the effectiveness of the architecture
to satisfy user information needs. In this case, those needs are related with the
document similarity retrieval problem. The results’ relevance measuring process
was realized by inspection.

The performance measure used in this work is the precision at k, whose com-
position is presented in equation 2:

precision at (k) =
relevant retrieved in the top k results

documents retrieved in the top k results
(2)

4.3 Results and Discussion

The table 2 shows the precision at k for results retrieved by the whole set of
paragraphs associated to their document types. Is easy to see, that the precision
at k differs with each type of documents.

Table 2. Precision at k for each type of documents for the first 10 ranks

k Precision All Precision Type 1 Precision Type 2 Precision Type 3

1 0,869 0,922 0,849 0,767
2 0,709 0,727 0,689 0,700
3 0,606 0,602 0,591 0,644
4 0,530 0,526 0,509 0,575
5 0,469 0,465 0,457 0,500
6 0,423 0,416 0,415 0,456
7 0,385 0,375 0,375 0,429
8 0,358 0,344 0,356 0,396
9 0,331 0,317 0,335 0,359
10 0,309 0,295 0,313 0,340

Firstly, type 1 has higher precision at the first values of k than the other types.
This is because bibliographic documents are often founded in popular collections
like Wikipedia, which are indexed by most of web search engines and usually
ranked on top. In this case, a web document will appear as result for most of
generated queries. Secondly, type 2 documents are not as popular as type 1. In

100 F. Bravo-Marquez et al.

this case, blog entries or personal pages are hardly indexed by all web search
engines. Finally, we can observe a lower precision for the first ranked results of
type 3 documents. However, a slow decayment of the precision at k is presented.
That is because news are repeated in many different web pages, like RSS feeds
aggregators, so is possible to find a high number of relevant results lower ranked
documents.

Fig. 3. In (a) the precision at k for different types of documents for the first 10 ranks
is presented. In (b), the precision at k for all types evaluated with all search engines is
compared against a single search engine.

As shown in Fig. 3 (b), the precision at k for all search engines outperforms a
single one for the retrieval of all types of documents. This fact could be explained
because the union of search engines gives a better coverage of the web, given that
their intersection can be considered as low [2]. In this case, the overall evaluation
of a search engine was compared against results retrieved by a single search
engine, showing that the meta-search process enhances the number of relevant
retrieved documents in comparison with the single search engine.

5 Conclusions

The effectiveness of the proposed SOA distribution of the meta-search engine
by using an object oriented architecture was successfully tested. Experimental
results showed that proposed architecture (DOCODE-lite) is able to satisfy the
document similarity retrieval problem. Likewise, results shows that the developed
meta-search model improved significantly the retrieval capacity than a single
search engine, contributing to the reception of this work.

In this work, as well as previous proposed methods for Web document sim-
ilarity retrieval, such as [4,12], are based in randomized query generation and
meta-search algorithms. However, in this case the scoring function uses the local
ranks and search engine reliability instead of downloading the retrieved docu-
ments [4], or text processing algorithms over the results snippets [12], aiming
towards the minimization of the processing time a lite-weighted architecture.

DOCODE-Lite: A Meta-Search Engine for Document Similarity Retrieval 101

Presented architecture can be applied for plagiarism detection, document im-
pact analyzer, related ideas retrieval, among other document retrieval problems.
For example, in plagiarism detection, the proposed model will retrieve a similar
document to the suspicious one, allowing the user to determine its authentic-
ity. Furthermore, plagiarized documents uses the same words than the original
source, usually changing the order of terms, for which proposed model will con-
vert suspicious document into a set queries that could retrieve original source
document. Likewise, for document impact analysis, the number of retrieved doc-
uments could be increased in order to review the frequency of appearance of a
quote paragraph.

Many plagiarism detection tools like eTBLAST 4 [5] compare the suspicious
documents over specific topic databases. Taking use of DOCODE-lite in the
search task, the search scope could be expanded, considering large document col-
lections. However, plagiarism detection tools like duplichecker5 allows to search
using commercial search engines, but don’t combine them in one single search.
Furthermore the fingerprinting process is deterministic, converting each sentence
directly into a query. Our probabilistic approach allow us to detect more sophis-
ticated plagiarism techniques. Finally Plagium6 seems to be using a randomized
query generation process, but only uses the Yahoo! search engine.

6 Future Work

As future work, the proposed architecture could be extended into a large scale
processing environment. This fact leads to complex distributed system architec-
ture and parallel processing problems that needs to be taken into consideration.
Also, further development in terms of the relevance feedback from users could
be considered in an active learning schema over the scoring parameters, in order
to enhance the effectiveness of the system.

It is important to consider, that DOCODE-Lite is a first approach for a doc-
ument plagiarism detection system. The proposed model is focused on solving
the document similarity retrieval problem for a given paragraph. A complete
plagiarism detector system should also allow working with large collection of
documents. The system should be able to identify potential plagiarized para-
graphs in documents using for example text mining algorithms. Those para-
graphs could consume the DOCODE-lite Web Service in order to retrieve a
collection of source candidates documents. Afterwards more sophisticated pla-
giarism detection strategies must be used. Finally a plagiarism detection system
that consumes the DOCODE-lite service will have a great advantage against
other similar tools. Because using DOCODE-lite Web Service gives the best
coverage from the Web at combing the effectiveness of commercial Web search
engines.

4 http://etest.vbi.vt.edu/etblast3/
5 http://www.duplichecker.com
6 http://www.plagium.com/

http://etest.vbi.vt.edu/etblast3/
http://www.duplichecker.com
http://www.plagium.com/

102 F. Bravo-Marquez et al.

Acknowledgment

Authors would like to thank Marcos Himmer for his useful comments in the
system’s architecture and interface development. Also, we would like to thank
continuous support of “Instituto Sistemas Complejos de Ingenieŕıa” (ICM: P-05-
004- F, CONICYT: FBO16; www.sistemasdeingenieria.cl); FONDEF project
(DO8I-1015) entitled, DOCODE: Document Copy Detection (www.docode.cl);
and the Web Intelligence Research Group (wi.dii.uchile.cl).

References

1. Aslam, J.A., Montague, M.: Models for metasearch. In: SIGIR 2001: Proceedings
of the 24th Aannual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pp. 276–284. ACM, New York (2001)

2. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-
Wesley Longman Publishing Co., Inc., Boston (1999)

3. Cormack, G.V., Palmer, C.R., Van Biesbrouck, M., Clarke, C.L.A.: Deriving very
short queries for high precision and recall (multitext experiments for trec-7) (1998)

4. Pereira Jr., Á.R., Ziviani, N.: Retrieving similar documents from the web. J. Web
Eng. 2(4), 247–261 (2004)

5. Lewis, J., Ossowski, S., Hicks, J., Errami, M., Garner, H.R.: Text similarity: an
alternative way to search medline. Bioinformatics 22(18), 2298–2304 (2006)

6. Rasolofo, Y., Abbaci, F., Savoy, J.: Approaches to collection selection and results
merging for distributed information retrieval. In: CIKM 2001: Proceedings of the
Tenth International Conference on Information and Knowledge Management, pp.
191–198. ACM, New York (2001)

7. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
ACM Commun. 18(11), 613–620 (1975)

8. Selberg, E., Etzioni, O.: The metacrawler architecture for resource aggregation on
the web. IEEE Expert, 11–14 (January-February 1997)

9. Velasquez, J.D., Palade, V.: Adaptive Web Sites: A Knowledge Extraction from
Web Data Approach. IOS Press, Amsterdam (2008)

10. Wu, Z., Meng, W., Yu, C., Li, Z.: Towards a highly-scalable and effective
metasearch engine. In: WWW 2001: Proceedings of the 10th International Confer-
ence on World Wide Web, pp. 386–395. ACM, New York (2001)

11. Wu, Z., Raghavan, V., Qian, H., Rama, V., Meng, W., He, H., Yu, C.: Towards
automatic incorporation of search engines into a large-scale metasearch engine. In:
WI 2003: Proceedings of the 2003 IEEE/WIC International Conference on Web
Intelligence, Washington, DC, USA, p. 658. IEEE Computer Society, Los Alamitos
(2003)

12. Zaka, B.: Empowering plagiarism detection with a web services enabled collabo-
rative network. Journal of Information Science and Engineering 25(5), 1391–1403
(2009)

www.sistemasdeingenieria.cl
www.docode.cl
wi.dii.uchile.cl

	DOCODE-Lite: A Meta-Search Engine for Document Similarity Retrieval
	Introduction
	Previous Work
	DOCODE-Lite
	Web Service Architecture
	Document Fingerprinting Model and Meta Search Scoring Function
	Software Design and Architecture Engineering

	Experiments and Results
	Experimental Setup
	Evaluation Criteria
	Results and Discussion

	Conclusions
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

