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Abstract

GPS-enabled devices and social media popularity have created an unprece-
dented opportunity for researchers to collect, explore, and analyze text data
with fine-grained spatial and temporal metadata. In this sense, text, time and
space are different domains with their own representation scales and meth-
ods. This poses a challenge on how to detect relevant patterns that may
only arise from the combination of text with spatio-temporal elements. In
particular, spatio-temporal textual data representation has relied on feature
embedding techniques. This can limit a model’s expressiveness for represent-
ing certain patterns extracted from the sequence structure of textual data.
To deal with the aforementioned problems, we propose an Acceptor recur-
rent neural network model that jointly models spatio-temporal textual data.
Our goal is to focus on representing the mutual influence and relationships
that can exist between written language and the time-and-place where it
was produced. We represent space, time, and text as tuples, and use pairs
of elements to predict a third one. This results in three predictive tasks that
are trained simultaneously. We conduct experiments on two social media
datasets and on a crime dataset; we use Mean Reciprocal Rank as evaluation
metric. Our experiments show that our model outperforms state-of-the-art
methods ranging from a 5.5% to a 24.7% improvement for location and time
prediction.

Keywords: Social media, Spatio-temporal data, Recurrent neural networks

1. Introduction

Online social media has gained wide adoption worldwide, and is now con-
sidered as having an influential role in public opinion. Within this context,
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social platforms such as Twitter1, Instagram2 and Facebook3 have allowed
users to start sharing the textual and multimedia content that they gener-
ate (e.g., opinions, interests, reviews and every day activities) with enriched
spatio-temporal information. This data can be represented as a record in the
form of a 〈where,when,what〉 tuple, in which the where means a location’s
latitude-longitude coordinates, the when is its timestamp and the what is its
content.

Pattern analysis of spatio-temporal data extracted from social media can
help us understand complex human behavior like mobility [1, 2, 3], also when
and where popular social activities are taking place [4, 5, 6, 7]. In addition,
timestamps and coordinates that are associated to textual data can be used
as filters to detect real-world emerging events, such as earthquakes [8, 9]
and civil unrest [10]. Moreover, these types of multi-modal data sources
have been successfully used for natural language based financial forecasting
[11, 12, 13, 14]. Besides social media, there are other data sources that relate
semantic content with spatio-temporal information. An example are crime
reports that include a natural language description of the crime, as well as the
time-and-place it occurred. The textual crime descriptions can come either
in the form of free text provided by the victim, or based on keywords and
more standardized phrases used by the police. Overall, the increased access
to this type of data can allow us to study and model textual information in
relation to its spatio-temporal context.

In this work, we focus on spatio-temporal textual data. In this sense, the
key component in any data mining problem is data representation, hence, the
multi-modality of space, time, and text provides an additional challenge. In
particular, text, its timestamp, and geographical coordinates, are commonly
represented in different scales and magnitudes. For instance, text is discrete
and has been represented, for example, using vector spaces, as opposed to
timestamp and coordinates, which are continuous variables. Hence, it is not
trivial to combine these components within a unified model.

State-of-the-art models [15, 7, 16] use feature embeddings to represent
the elements of the tuple 〈time, location, text〉. This representation consid-
ers text as a bag-of-words where each unique word is represented by dense

1https://twitter.com/
2https://www.instagram.com/
3https://www.facebook.com/
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vectors or embeddings. Then, at inference time, a text is represented as the
average of its word embeddings. An important limitation of this type of ap-
proach is that language structure (i.e., the order of words within a sentence)
is ignored. Hence, potentially relevant language patterns derived from the
sequential nature of text data are discarded. In this work, we propose an Ac-
ceptor recurrent neural network (RNN) architecture [17], which we refer to as
STT-RNN. STT-RNN is designed to providee an integrated view of spatio-
temporal textual data. The Acceptor is an RNN usage pattern in which an
RNN encodes a sequence into a single vector that corresponds to the output
vector of the last token in the sequence. This vector is usually fed into a
fully connected layer to produce a prediction [17]. Specifically, STT-RNN
is designed to retrieve one element of the tuple 〈time, location, text〉 by only
knowing the other two. Hence, the use of RNNs allows us to represent text
in a more expressive manner without loss of sequential language structures.
The goal of our proposed model is to provide a representation that allows us
to extract patterns related to spatio-temporal human activities. Specifically,
we propose a model that can be trained on spatio-temporal text records,
which can be used to gain insight into the following 3 information seeking or
retrieval tasks:

1. What is the most likely time period associated with a given text passage
and a spatial location?

2. What is the most likely location associated with a given text passage
and time period?

3. What is the most likely text associated with a given location and time?

To illustrate the usefulness of the proposed model we present examples of
applications for each type of retrieval task. For instance, a possible applica-
tion for task (1) is helping local police optimize the allocation of their agents
to areas that are more prone to certain crimes at certain times of the day.
The specific task, in this case, could be to find the times at which ‘car thefts‘
are more likely to take place in ‘shopping mall A‘ (i.e., find time given loc and
text). For task (2), on the other hand, a possible application is to find places
where certain activities take place at a certain time interval. A concrete ex-
ample, regarding criminal activity, would be to find areas in a city in which
‘drug related crimes‘ occur at night (i.e., find loc given text and time). In ad-
dition, task (3) can help characterize which activities take place in a certain
urban area at a certain time (i.e., activity modeling). For example, given a
particular park and time frame, find the top-recreational activities practiced
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there (i.e., find text given loc and time). We envision many other possibilities
for representing effectively time, location and text in a unified manner. Ur-
ban planning might improve from understanding which activities people like
to do at different places and times in a city. Also, commercial search engines
will certainly benefit from context-aware results for users. Since humans fol-
low spatio-temporal routines in their everyday life, a recommender system
could provide recommendations to users by only knowing their location at
the present moment.

In summary, the main contributions of this paper are:

• We propose an Acceptor recurrent neural network architecture that
jointly models spatial variables, temporal variables and text.

• We present an empirical evaluation of our model and comparison to
similar state-of-the-art approaches.

• We study how the three elements of 〈time, location, text〉 correlate to
each other in social media domains like Twitter and Foursquare4.

The rest of this paper is organized as follows: Section 2 describes related
work in spatio-temporal textual data modeling. Section 3 presents the de-
scription of the proposed model. Section 4 shows the validation experiments
and finally in Section 5 we present the conclusions.

2. Related work

In this section we provide an overview of the literature relevant to our
proposal. First, we describe models that detect geographical topics. Then,
we describe works that focus on modeling spatio-temporal activities. After
that, we describe multimodal embedding methods for spatio-temporal text
data and finally we briefly overview recurrent neural networks.

Geographical topic modeling focuses on detecting topics that charac-
terize geographical areas [18, 19, 5, 20, 21]. Mei et al. in [18] propose a
generalization of Probabilistic Latent Semantic Indexing [22] where topics
can be generated either by the combination of timestamp and location or
text. Yin et al. propose LGTA in [5]. LGTA is a generative model where

4https://foursquare.com
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there are latent regions that are geographically distributed by a Gaussian.
Each region has a multinomial distribution over topics and each topic has a
multinomial distribution over keywords. Kling et al. propose MGTM in [20],
a model based on multi-Dirichlet processes. They use a three-level hierarchi-
cal Dirichlet process with a Fischer distribution for detecting geographical
clusters. Also, a Dirichlet-multinomial document-topic distribution and a
Dirichlet-multinomial topic-word distribution. Wang et al. propose LATM
in [19]. LATM is an extension of Latent Dirichlet Allocation (LDA) [23, 24],
capable of learning the relationships between locations and words. In the
model each word has an associated location. For generating words, the model
produces the word and also the location, in both cases with a multinomial
distribution conditioned on a topic that is generated by a Dirichlet distribu-
tion. In [21], Hong et al. introduce the user as a variable in the model. In
each tuple user,location, text, texts are represented under a bag-of-words as-
sumption, also geographical locations are clustered into latent regions. Hong
et al. use three language models: a background language model, a region-
dependent language model and a topic language model. The latent regions
are generated by a multinomial distribution depending on the user and a
global region distribution. The locations are generated by regions using mul-
tivariate Gaussian distributions. After that the topic is generated considering
all together the global topic distribution, the user and the region. Finally,
the words are generated by the topic.

Our work differs from this approaches in that we do not make assumptions
distribution over the data. Spatio-temporal text data generation is influenced
by many factors specific to different places and moments, these patterns are
difficult to model with predefined distributions.

Spatio-temporal activity modeling [4, 25] is about finding which activi-
ties are reported in the different areas of a city. In this section we highlight
works that label places using semantic data, such as social media text. Wu
et al. in [4] annotate user visits to points of interest in the physical world.
They test four methods for labeling places with text: term frequency, term
frequency-inverse document frequency, a Gaussian mixture model and a ker-
nel density estimation model. The kernel density estimation method got the
best results in their experiments. Ye et al. also annotate places with labels in
[25]. They model the problem as a multitask classification problem and use a
Support Vector Machine classifier. Places are represented with two types of
features. Some features are extracted from similar places, whereas the other
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ones are extracted from spatial and temporal information. Combining the
two types of features proved to be the best approach.

The works in this section annotate places with keywords. In our ap-
proach, we jointly model time, places and texts. We can annotate places
with keywords but also we can query the model with any combinations of
the three variables with text as part of the query.

Embedding methods are used to find a dense, low-dimensional continu-
ous vector representation for discrete variables. These methods have been
successfully applied for representing words [26, 27, 28] and nodes in graphs
[29]. In the case of spatio-temporal textual data, embedding methods allow
to represent the three elements of the tuple 〈time, location, text〉 in the same
space using co-occurrence patterns. It is important to remark that spatial
and temporal variables must be discretized in order to employ embedding
methods on them.

In [15], Zhang et al. propose CrossMap, a multimodal embedding method.
CrossMap applies a discretization method to timestamps and coordinates
based on Kernel Density Estimation. High density regions found for timetamps
and locations are used as discretization categories. Afterwards, authors use
two strategies to compute the embeddings, named Recon and Graph. Recon
assumes that each tuple 〈time, location, text〉 is a relation and then learns em-
beddings for timestamps, locations and words such that the relation can be
reconstructed. Graph builds a graph of co-relations and then learns embed-
dings for timestamps, locations and words such that the structure of the graph
is preserved. Later in [7] the authors extend the model to obtain embed-
dings from streaming data. Unlike Crossmap, they use the hour-of-the-day
to discretize timestamps and 300m × 300m grids to discretize geographical
coordinates. The main contribution of this approach is two new strategies to
compute the vectors from the streaming data source, one based on life-decay
learning and the other on constrained learning. In [16], Zhang et al. pro-
pose an embedding method capable of learning from multiple sources. Each
source is a dataset that defines a graph of co-relations. The embeddings are
trained to preserve the structure of the graphs. There is a main graph that
is defined by the tuples: 〈time, location, text〉, the embeddings associated
to the main graph are shared with secondary graphs inducted by secondary
datasets. In addition, each secondary graph defines an embedding space that
is concatenated to the embeddings of the main graph. During training, the
model alternates between learning the embeddings for the main graph and
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the embeddings for the additional data sources.
These works model the text as the average of word embeddings. In our

approach, we jointly model times, places and texts with recurrent neural net-
works where we represent contexts beyond a shallow average of embeddings.

Overall, our work differs from prior work in that we use an Acceptor
recurrent neural network architecture that allows representing the sequential
structure of text together with spatial and temporal information. Also, we
study different levels of granularity for temporal and spatial representation
and analyze correlations between the three elements of 〈time, location, text〉.
The proposed model can be queried with any combination of time, place and
text and retrieve any of the three variables.

Recurrent neural networks [30] are a class of neural networks for modeling
sequential data. They have been successfully applied to natural language
processing problems like speech recognition [31] and machine translation [32,
33, 34], as well in other text mining problems such as analyzing sentiment
time series from social media for financial asset allocation [35]. In the case
of spatio-temporal data, they have been mostly used for mobility modeling
[36, 37, 38, 39]. LSTM [40] and GRU [41] are popular variants of RNN
architectures. In our case, we use GRU because they have fewer parameters
and have shown similar performance to LSTM according to [41]. In the basic
architecture for an RNN there is a vector h that represents the sequence.
At each timestep t the model takes as input ht−1 and the t-th element of
the sequence xt; then computes ht. GRU introduces gates to this process to
select what to pass to the next hidden state ht and what to forget. Equations
1,2,3 and 4 show the computing steps of a GRU network.

rt = σ(Wirxt + bir +Whrh(t−1) + bhr) (1)

zt = σ(Wizxt + biz +Whzh(t−1) + bhz) (2)

nt = tanh(Winxt + bin + rt(Whnh(t−1) + bhn)) (3)

ht = (1− zt)nt + zth(t−1) (4)

RNNs can successfully model the order of words within a sentence by
treating a sentence as a sequence of word embeddings. Each hidden state
ht can be viewed as a memory unit that encodes the sentence until word xt.
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Hence, the hidden state of the last word encodes the whole information of the
sentence while paying attention to the structured properties of it [17]. In our
model we incorporate location and time as special tokens into the sequence.

3. Proposed Approach

3.1. Problem Formulation

Given a collection of records that provide textual descriptions of a geo-
graphical area at different moments in time; our goal is to create a model ca-
pable of representing this multi-modal data. We require the resulting model
to be able to predict missing values of either text, time, or space.

More formally, let be H = {r1, ..., rn} a set of spatio-temporal anno-
tated text records (e.g., a tweet, a crime incident description). Each ri
is a tuple 〈ti, li, ei〉, where: ti is the timestamp associated with ri, li is a
two-dimensional vector representing the location corresponding to ri, and ei
denotes the text in ri. Given an incomplete record where either ti, ri or ei is
missing, the resulting model should be able to reconstruct the missing item.
This results in three predictive tasks: 1) predicting time for which a certain
text was produced in a particular location, 2) predicting location from which
a text was generated at a certain time, and 3) predicting text that is created
from a certain location and time.

3.2. The STT-RNN Model

As mentioned, state-of-the-art models [15, 16, 7] use feature embeddings
to represent the elements of the tuple 〈ti, li, ei〉. For the case of text, embed-
ding representations discard the order of words, which can limit the expres-
sive power of the model. We propose STT-RNN, an Acceptor RNN model
that goes beyond feature embeddings.

Figure 1 shows the STT-RNN architecture. As a first preprocessing
step: time and space are discretized and text is tokenized. The elements
of the tuple 〈time, location, text〉 are passed through a multi-modal embed-
ding layer. The multi-modal embedding layer projects words, time and lo-
cation into a unified representation space. After discretization, each item
from 〈time, location, text〉 is represented by an integer that is used as an in-
dex in the multi-modal embedding layer. The multi-modal embedding layer
is a look-up table shared by the three elements, each one of these, 〈time〉,
〈location〉 and 〈text〉, occupies a segment of the table. Afterwards, a single
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element from the tuple is selected as the target, whereas the two remain-
ing ones are selected as the source-context. Only the elements selected as
source-context are passed through the multi-modal embedding layer.

The elements that are selected as source-context are concatenated as a
sequence input to the GRU-RNN. In this way, the RNN processes the input
as a sequence of tokens formed by words, times or locations. The output of
the GRU-RNN is passed as input to the predictor component. The predictor
component is formed by three different fully connected layers to predict either
time, place or words ; depending on the task. We call them PredictorTime,
PredictorLoc, and PredictorWord. We select which fully connected layer to
use depending on the target. The fully connected layers are passed through
a softmax function with a cross-entropy loss over the output space of the
corresponding task: words for PredictorWord, locations for PredictorLoc,
and time for PredictorTime. The probability of a text passage is computed
as the average probability of the predictions made by PredictorWord for each
of its word.

We trained the model with pairs 〈time, loc〉 → text, 〈time, text〉 → loc
and 〈loc, text〉 → time. The contexts are represented with the same GRU-
RNN sharing parameters for the three cases. This allows each task to benefit
from each other and allows us to query the model with any combination
of 〈time, location, text〉. We can ask to return any of the three variables as
output. Any combination of 〈time, location, text〉 can be processed as a in-
put sequence by the GRU-RNN, for example: we could query the model
with any of the sequences that the model is trained to represent 〈time, loc〉,
〈time, text〉 and 〈loc, text〉, but also with sequences like just text 〈text〉, or
just a token of time 〈time〉 or a token of location 〈loc〉 and ask the model to
predict any of the three variables.

As mentioned above, we designed STT-RNN to perform three predictive
tasks: 1) predict time for which a certain text was produced in a particular
location, 2) predict location from which a text was generated at a certain
time, and 3) predict text that is created from a certain location and time.
Although, in tasks 1 and 2, 〈text〉 is part of the context and it makes sense
to use a recurrent neural network to capture the sequential structure of text;
in task 3, 〈text〉 is not part of the context, and hence, the context tuple
〈time, space〉 lacks a sequential structure. Nevertheless, we stay with our de-
sign for the following reasons. First, to maintain comparability with previous
works that evaluate models in the three tasks mentioned. Second, to allow
our model to be queried with any combination of 〈text〉,〈time〉 and 〈space〉
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and retrieve any of those items. Finally, for the sake of completeness, we
think it is important to show all scenarios on which our proposed model can
be evaluated to establish a complete background for future work.

It is worth mentioning that we conducted preliminary experiments con-
sidering variations of the proposed architecture for both, the GRU-RNN and
the Predictor components. All these variants either performed worst or did
not exhibit any improvement over our model while adding complexity in
some cases. For the GRU-RNN we tested using LSTMs [40] instead of GRUs
and also experimented with attention mechanisms [42]. Both cases added
complexity to the model (in terms of the number of parameters to estimate)
without obtaining any significant improvements. In the case of the LSTM,
our results were consistent with previous results [41]. Regarding the atten-
tion mechanism, since our sentences were truncated to 15 and 10 tokens for
the social media and crime incidents description datasets correspondingly,
we believe that our sentences were not long enough to observe the benefits
of adding an attention mechanism to the network.

Regarding the predictor component, we tested text generation with a
decoder-GRU recurrent neural network using the GRU-RNN as encoder. We
got poor results with this approach when comparing to generating each word
independently.

Our preliminary experiments show the main benefit of our architecture:
it is simple and competitive to other more complex variations.

3.2.1. Model Parameters

We use 64-dimensional embedding representation for timestamp, location
and words. The GRU-RNN representation uses a single-layer GRU with a
hidden layer size of 128.

3.3. Training Algorithm

Algorithm 1 shows the training process for STT-RNN. First we build a
text indexer and discretize timestamps and coordinates. The text indexer
builds a vocabulary, keeping only those terms that are alpha-words (words
made up of alphabet letters only), appear more than 100 times and are
not stop-words (words like articles and prepositions without semantic mean-
ing). Timestamps and coordinates are discretized using a clustering-based
approach described in Section 3.4.

The model is trained for a number of epochs using mini-batch gradient
descent with Adam optimizer [43]. At each step we store the model’s weights
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Figure 1: Architecture of STT-RNN.

as well as the results of evaluating the model on a held-out validation set.
The returned model is the one that performed best on the validation set
across the various training steps.

3.4. Timestamp and coordinate discretization

As mentioned before, texts, timestamps and coordinates are variables
from different domains with different scales and representation methods.
Text is a sequence of discrete tokens (i.e. words, characters), while times-
tamps and coordinates are continuous variables. To jointly model the three
variables the approach that we followed is to discretize timestamps and coor-
dinates.This approach allows us to deal with sparseness issues and to repre-
sent the tuple 〈time, location, text〉 under the unified paradigm of a sequence
of discrete tokens.

In our experiments we used two different approaches for temporal and
spatial discretization: 1) a density-based approach and 2) equal-width bin-
ning. The density-based approach was proposed by Zhang et al. in [15] and
we use it to make our results comparable to previous work. Timestamps
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Algorithm 1: Training algorithm for STT-RNN

Input: Set H of spatio-temporal records tuples of the form 〈ti, li, ei〉.
Output: Trained model T.
Build TimeDiscretizer(H).
Build LocDiscretizer(H).
Build TextIndexer(H).
//Discretize
for hi ∈ H do

TimeDiscretizer(ti)
LocDiscretizer(li)
TextIndexer(ei)

//Training
Initialize Parameters θ
for epoch ∈ {1,2,...,EPOCHS} do

for batch ∈ {1,2,...,batch size} do
for target ∈ {t, l, e} do

context is {t, l, e} - target

Update θ using the three batches of 〈context, target〉 from
Train using the optimization algorithm and the objective
function

Save θ at this step.
Save the results of evaluating model T with parameters θ over the
Validation set

Output trained model T with weights θ at step with best results over
the Validation set

are converted to numbers in the range [0-86,400]5 by calculating their offset
in seconds with respect to 12:00am. Then, a density-based automatic dis-
cretization technique is applied to both the transformed temporal variables
and coordinates. This leads to high density temporal windows and spatial
cells (for more details refer to [15]).

The second discretization approach is to apply equal-width binning to
both temporal and spatial variables. The main benefits of this approach are:
1) discretization bins are easier to interpret, and 2) it allows us to study the

586,400 is the number of seconds in a day.
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impact of the discretization granularity in the model’s performance by mod-
ifying the size of the bins. For equal-width binning timestamp discretization
we consider the 168 hours of a week (24 × 7) as the representation domain.
That means that two events occurring on the same hour and day of the week
would be mapped to the same time number. Then we use bins of k continu-
ous hours to discretize the 168 hour window. The greater the value of k the
lower the number of bins.

For equal-width spatial discretization we use equal size cells obtained
after performing the following arithmetic operation on the latitude and lon-
gitude floating number coordinates: l− (l mod c), where l can be latitude or
longitude and c refers to the cell size.

For example: coordinates (-72.45772, 33.358423) would be assigned to
cell (-72.457, 33.358) using 0.001 as the cell size, or to cell (-72.456, 33.358)
using 0.002 as the cell size. Table 1 shows an example of the discretization
of a tweet.

Location 34.0430 ,-118.2673 34.04 ,-118.26
Time Feb 1,2019, 1:31:00AM (Friday)5× 24 + 1=121∈120
Message LeBron is back LakeShow lebron back lakeshow

Table 1: Example of discretization of a geo-tagged tweet using one-hour time window size
and 0.02 spatial cell size.

3.4.1. Training Parameters

As loss function, we used the cross-entropy loss. Also, we used back
propagation through time [44], mini-batch gradient descent and Adam [45]
with an initial learning rate of 0.001. We used a batch size of 256 and trained
for 30 epochs with early stopping.

4. Experiments

In this section we describe our experimental framework. The goal of this
evaluation is to measure our model’s ability to predict a missing element
from a tuple of the form 〈time, location, text〉, in which either time, location,
or text is missing. For the purpose of comparing to prior work, we followed
the evaluation methodology used by Zhang et al. in [15].

Next, we describe the datasets used in our evaluation and baseline models.
Then, we present the evaluation methodology and a study of the sensitivity
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to the discretization techniques. We conclude our analysis with a case study
of a real-world crime description dataset.

4.1. Dataset description

Our experiments aim to answer two research questions: 1) is our model
competitive to previous approaches? and 2) can our model be used in more
than one domain?

In that sense, we evaluated our model using two types of data sources,
social media user posts, and official crime incident reports. Social media
datasets coming from Twitter and Foursquare are used for quantitative com-
parison between our approach and state-of-the-art baselines using the same
settings used in the original evaluations. Crime reports, on the other hand,
are included to add more diversity to our analysis and to show a real-world
application of our model in the form of a case study. Each dataset is described
below.

Twitter dataset (‘Tweets’): This dataset was provided by Zhang et al. in
[15] and corresponds to Twitter messages collected from Los Angeles, USA.
This dataset consists of 1,584,307 geo-tagged tweets (short-text messages)
covering the period of time from 2014.08.01 to 2014.11.30.

Foursquare dataset (‘4S’): This data was also provided by Zhang et al.
in [15] and consists of Foursquare check-ins reported on Twitter by users in
the city of New York, USA. The data contains 479,297 records that indicate
places in the city that were visited by users along with their location, for the
period of 2010.02.25 to 2012.08.16.

Crime incident dataset (‘Crime’): This dataset contains crime reports
from the city of New York, USA6. It was obtained from the New York City
Open Data repository7. The dataset contains textual descriptions used by
police agents to classify crime incidents along with their geolocation. The
dataset consists of 1,016,008 crime incident records, after filtering, that cover
the dates starting 2000.01.01 to 2015.12.31.

Table 2, shows a summary of each dataset described.

6https://data.cityofnewyork.us/api/views/qgea-i56i/rows.csv?accessType=DOWNLOAD
7https://opendata.cityofnewyork.us/
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Records City Start Date End Date
Tweets 1,584,307 Los Angeles 2014.08.01 2014.11.30
4S 479,297 New York 2010.02.25 2012.08.16
Crime 1,016,008 New York 2000.01.01 2015.12.31

Table 2: Spatio-temporal Annotated Datasets

4.2. Baselines

In this section we describe the baseline methods that we used for validat-
ing our approach, STT-RNN. As baselines, we used current state-of-the-art
for modeling spatio-temporal textual data, and also existing approaches for
geographic topic modeling. Next, we detail these baselines.

• LGTA [5] is a generative model where there are latent regions that are
geographically distributed by a Gaussian distribution. Each region has
a multinomial distribution over topics and each topic is a multinomial
distribution over words.

• MGTM [20]: is a generative model based on multi-Dirichlet pro-
cess. The authors use a three leveled hierarchical Dirichlet process with
a Fischer distribution for detecting geographical clusters, a Dirichlet-
multinomial document-topic distribution and Dirichlet-multinomial topic-
word distribution.

• SVD performs Singular Value Decomposition on the co-occurrence ma-
trix of timestamps, location and words.

• Recon [15] assumes each tuple 〈time, location, text〉 is a relation and
then learns embeddings for timestamps, locations and words such that
the relation can be reconstructed.

• Graph [15] builds a graph of co-relations and then learns embeddings
for timestamps, locations and words such that the structure of the
graph can be reconstructed.

4.3. Results

In this section we show a comparison with the state-of-the-art methods.
Later, we study how parameters like spatial granularity and temporal gran-
ularity affect the quality of predictions.
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4.3.1. Comparison to the state-of-the-art

For each 〈t, l, e〉 in the dataset, the input to the model is the set of tuples
in the form: 〈time, location, text〉. We kept only those terms that are alpha-
words, appear more then 100 times and are not stop-words. Then, we split
the dataset in training-validation-test, keeping 20% of each dataset as test,
20% for validation and 60% for training.

To evaluate the model, for each tuple in the test we want to predict an
element, given the others of the tuple. For each test prediction, we randomly
selected k=10 negative examples. We ranked the negative examples and the
target according to the model using the context elements as input.

We used the mean reciprocal rank (MRR) to evaluate the quality of the
ranks produced by the model. Given a set Q of queries, the MRR is defined
as:

MRR = (

∑|Q|
i=1

1
ranki

|Q|
) (5)

It is worth mentioning that we chose this evaluation setting to keep the
evaluation methodology consistent with the evaluation setting of state-of-the-
art works [15]. We used the same discretization techniques with the same
parameters and the same methodology described in [15].

Text Location Time
Method Tweets 4S Tweets 4S Tweets 4S
LGTA 0.376 0.6107 0.3792 0.6083 - -
MGTM 0.3874 0.5974 0.4474 0.5753 - -
SVD 0.4475 0.4475 0.3953 0.646 0.3256 0.3187
STT-RNN 0.4947 0.7227 0.7175 0.9547 0.3939 0.4505
Recon 0.687 0.9219 0.6526 0.9044 0.3582 0.3612
Graph 0.7011 0.9449 0.6758 0.9168 0.3895 0.3716

Table 3: Mean Reciprocal Rank for spatio-temporal textual data modeling. The three
tasks evaluated are predicting each one of the elements of the tuple 〈time, location, text〉
knowing the other two. In this table, we show results for the social media datasets of the
proposed model and state-of-the-art methods.

In Table 3, we show the results for the social media datasets. We can
see that STT-RNN outperformed all the models for location prediction and
time prediction. The improvement for location prediction are: 0.0649 for
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the dataset Tweets and 0.0503 for the dataset 4S. The improvement for time
prediction are: 0.0357 for the dataset Tweets and 0.0893 for the dataset 4S.
These improvements in Mean Reciprocal Rank correspond to 9.9%, 5.5%,
9.9% and 24.7% with respect to previous state-of-the-art results. This is
consistent with our idea that RNNs will produce a better representation than
the average of word embeddings for texts. Since the Text is only considered
as input for Location prediction and Time prediction, these are the tasks
that STT-RNN performed the best.

In the case of Text prediction STT-RNN was only outperformed by the
state-of-the-art models Recon and Graph. We believe this is due to the con-
text for Text prediction being a sequence of only two elements 〈Location, T ime〉
and a RNN performs at its best with longer sequences when comparing to
simple average embedding of words, though STT-RNN outperformed the rest
of the baselines. Consistent with previous works, it showed better results for
4S than for Twitter. Also, Time prediction proved to be the hardest task. To
further analyze these results, we computed the average entropy of the distri-
bution of words for temporal windows and spatial cells for both datasets. In
Table 4, we see that for both datasets the entropy of word distribution over
spatial cells covers a higher percentage of the maximum entropy than the
entropy of the word distribution over temporal windows. This means that
words are more strongly correlated to spatial cells than to temporal windows.

Tweets 4S
Metric Time Location Time Location
Ave Entropy 4.50 6.76 4.01 4.23
Maximum Entropy 4.90 13.31 4.64 12.37
% Max Entropy 0.91 0.50 0.86 0.34
No Cells 24 5297 29 10159

Table 4: Maximum entropy, number of cells and percent of the maximum entropy covered
by the average entropy of words distribution over spatial cells and temporal windows for
both social media datasets Tweets (tweets from LA) and 4S (Foursquare check-ins from
NY).

4.3.2. Sensitivity analysis to spatial and temporal granularities

In this section, we show how the spatial and temporal granularities affect
the results of STT-RNN. We studied how robust the model is to changing
the granularity of time windows and spatial cells.
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Temporal-granularity analysis. In Table 5, we show results by changing
the temporal window size. For these experiments we used a combination
of hour-of-the-day and day-of-the-week resulting in a set of 24x7=128 hour
ranges. In our experiment we used temporal windows sizes 1,2,4,8,12 and
24 (See Sect. 3.4). In Table 5 we can see that location prediction is not
affected by changes in the temporal variable, while text prediction shows a
small drop. For time prediction, the clear tendency is to decrease the MRR
while increasing the windows size. We consider that this is due to the fact
that increasing the temporal window size introduces noise because a bigger
temporal window size means a bigger spreading of when the text was gener-
ated and additional places to consider inside the temporal window. Also, this
corroborates the idea that the temporal variable is poorly correlated with the
other two and changing the temporal discretization almost does not affect
the prediction for places and texts.

Text Location Time
Window-Size 4S 4S 4S

1 0.6373 0.9524 0.4489
2 0.6319 0.9532 0.4432
4 0.6334 0.9553 0.4362
8 0.6288 0.9551 0.3938
12 0.6262 0.9542 0.3647
24 0.6209 0.953 0.2966

Table 5: Mean Reciprocal Rank for spatio-temporal textual data modeling. The three
tasks evaluated are predicting each one of the elements of the tuple 〈time, location, text〉
knowing the other two. In this table, we show how STT-RNN performs while changing
the temporal window, here we evaluate on the Foursquare dataset.

Spatial-granularity analysis. In Table 6, we show the results by changing
the spatial cell size. We used squared equal-size spatial cell by manipulating
the continuous values representing the latitudes and longitudes (See Sect.
3.4). We experimented with cells size 0.01, 0.02, 0.03, 0.04, 0.05 and 0.06
which are equivalent to around 10, 20, 30, 40, 50 and 60 blocks. Predicting
the temporal variable does not get affected by changing the size of the spatial
cell, confirming previous findings about the relations between the temporal
variable and the spatial variable. Similar to what happens with time predic-
tion when expanding the temporal window, expanding the spatial cell makes
it harder to predict correctly the spatial cell. Also, expanding the spatial
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cell makes harder the task of text prediction, confirming a strong correlation
between places and texts.

Text Location Time
Cell-Size 4S 4S 4S

0.01 0.6373 0.9524 0.4489
0.02 0.5612 0.941 0.4534
0.03 0.5352 0.9291 0.4521
0.04 0.5013 0.9253 0.4539
0.05 0.4735 0.9125 0.4534
0.06 0.4755 0.9054 0.4541

Table 6: Mean Reciprocal Rank for spatio-temporal textual data modeling. The three
tasks evaluated are predicting each one of the elements of the tuple 〈time, location, text〉
knowing the other two. In this table, we show how STT-RNN performs by changing the
spatial granularity. Here we evaluate on the Foursquare dataset.

4.3.3. Crime data analysis

In this section, we show a case study of the application of STT-RNN to a
dataset of crime descriptions. We chose this dataset to show the usefulness
of applying STT-RNN to different domains. Crime descriptions are texts
describing a crime, either with natural language descriptions used by a victim
or keywords and phrases used by police agents. We used a dataset of crime
descriptions from the city of New York (See Sect. 4.1) which contains texts
used by police agents to describe the incident, timestamps of when the crime
took place and coordinates of where.

First, we compared STT-RNN to the state-of-art work [15] following the
same methodology described in section 4.3. Similar to the results using the
social media datasets, in Table 7 we can see that STT-RNN shows the best
results for predicting times and places. Given that STT-RNN is at its best for
retrieving places and times, in Table 8 and Table 9 we show results querying
STT-RNN when trained with the crime dataset. To show the utility of the
model, we queried first with a crime associated with night activity “alcoholic
beverage control law”. We can see that the results show night hours and
weekend days. Second, we queried the model with a crime not associated
with night activities “state laws non penal”, we can see that the results show
afternoon hours and weekdays. For both cases STT-RNN allows us to find
hot-spots in the map of the corresponding types of crimes.
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Text Location Time
Method Crime Crime Crime
Graph 0.37 0.3852 0.3191

STT-RNN 0.3109 0.5586 0.3688

Table 7: Mean Reciprocal Rank for spatio-temporal textual data modeling. In this table
we show results for the crime incident dataset of STT-RNN and the state-of-the-art work
Graph.

Coordinates Time-Day Time-Hour

Friday
Sunday
Saturday
Sunday
Thursday
Saturday
Saturday
Tuesday
Wednesday
Thursday

11pm
1am
1am
12am
11pm
10pm
12am
10pm
1am
1am

Table 8: Spatial and temporal results for textual queries. Query=“alcoholic beverage
control law”.

5. Discussion and Conclusions

We studied the problem of modeling spatio-temporal annotated textual
data and proposed a recurrent neural network that jointly models text, times-
tamps and geographical coordinates. The proposed model STT-RNN outper-
formed state-of-the-art methods in our experiments for two of the three tasks
evaluated and ranked third for the other task. STT-RNN proved to be an
effective method to model spatio-temporal text data. Given a dataset of
spatio-temporal text data, a trained STT-RNN model can be queried with
any combination of elements from the tuple 〈time, location, text〉 and recover
any of its element. This can be helpful for finding intrinsic spatio-temporal
patterns that characterize the textual information exhibited in social media
or crime incident descriptions.

We studied the correlation between the three variables 〈time, location, text〉
in social media data from Twitter and Foursquare. We found that location
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Coordinates Time-Day Time-Hour

Wednesday
Tuesday
Monday
Wednesday
Saturday
Thursday
Thursday
Tuesday
Friday
Tuesday

3pm
3pm
3pm
5pm
6pm
5pm
3pm
5pm
3pm
4pm

Table 9: Spatial and temporal results for textual queries. Query=“state laws non
penal”.

and text are highly correlated, text and time are slightly correlated and lo-
cation and place are poorly correlated with each other.

Despite its strengths, STT-RNN has its limitations. Predicting text from
〈time, location〉 did not outperform the state-of-the-art. We attribute this
to the fact that RNNs benefit when processing sequential data as input (e.g.,
text). Time and space do not exhibit this sequential structure when used as
input. In other words, time and space showed to be a weak context for the
STT-RNN to extract the information required to predict text.

As future work, we are interested in three lines of further research. First,
we would like to explore other architectures for predicting text from the
〈time, location〉 context. For example, we plan to explore using contextual-
ized word embeddings from large pre-trained neural networks such as ELMo
[46] and BERT [47].

Second, we plan to study other automatic discretization techniques. For
example, in the case of spatial discretization, we would like to explore using
geographical divisions with semantic information like socioeconomic divisions
as the discretization criterion.

Third, we intend to study the transferability of our approach by deploying
spatio-temporal textual models trained on data from a source domain to a
target domain. The source and the target domains can differ from each
other in many ways, for example, the source domain can be Twitter and the
target domain can be crime reports. The hypothesis is that if the data of the
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source domain is larger than that of the target domain, and both domains
are related to each other (e.g., the language and the space regions are shared
in both domains) then a transfer learning approach can be employed. Neural
network models are very suitable for transfer learning as one can pretrain
a model from the source domain and adapt it to the target domain via
further training. Since neural network leverage statistical strengths from
large datasets (the source domain), the transfer learning approach may help
to improve performance on the target domain.
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