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Abstract

To avoid the “meaning conflation deficiency”
of word embeddings, a number of models have
aimed to embed individual word senses. These
methods at one time performed well on tasks
such as word sense induction (WSI), but they
have since been overtaken by task-specific
techniques which exploit contextualized em-
beddings. However, sense embeddings and
contextualization need not be mutually exclu-
sive. We introduce PolyLM, a method which
formulates the task of learning sense embed-
dings as a language modeling problem, allow-
ing contextualization techniques to be applied.
PolyLM is based on two underlying assump-
tions about word senses: firstly, that the prob-
ability of a word occurring in a given con-
text is equal to the sum of the probabilities of
its individual senses occurring; and secondly,
that for a given occurrence of a word, one
of its senses tends to be much more plausi-
ble in the context than the others. We evalu-
ate PolyLM on WSI, showing that it performs
considerably better than previous sense embed-
ding techniques, and matches the current state-
of-the-art specialized WSI method despite hav-
ing six times fewer parameters. Code and
pre-trained models are available at https://
github.com/AlanAnsell/PolyLM.

1 Introduction

Much work in NLP has been dedicated to vector
representations of words, but it has been recognized
since as early as (Schütze, 1998) that such repre-
sentations fail to capture the polysemous nature of
many words, conflating their multiple senses into
a single point in semantic space. There have been
several attempts at embedding individual word
senses to avoid this issue, termed the “meaning
conflation deficiency” by Camacho-Collados and
Pilehvar (2018) in their survey on the area.

We propose PolyLM, an unsupervised sense em-
bedding model which is effective and easy to apply
to downstream tasks. PolyLM can be thought of as

both a (masked) language model and a sense model,
as it calculates a probability distribution both over
words and word senses at masked positions. The
formulation is derived from two observations about
word senses: firstly, that the probability of a word
occurring in a given context is equal to the sum of
the probabilities of its individual senses occurring;
and secondly, that for a given occurrence of a word,
one of its senses tends to be much more plausible
in the context than the others.

There are several reasons for the interest in sense
representations. The first is the downsides associ-
ated with the meaning conflation deficiency. Word
embedding models can have difficulty distinguish-
ing which sense of an ambiguous word applies in a
given context (Yaghoobzadeh and Schütze, 2016).
Additionally, homonymy and polysemy cause dis-
tortion in word embeddings: for instance, we would
find the unrelated words left and wrong unreason-
ably close in the vector space due to their similarity
to two different senses of the word right, an effect
noted by Neelakantan et al. (2014) and illustrated
in Figure 1. Intuitively we would expect that sense
embedding models could gain superior semantic
understanding by avoiding these problems.

In addition to well-established applications for
sense representations such as word sense disam-
biguation (WSD) and induction (WSI), another in-
teresting use case is the automatic construction
of lexical resources (Neale, 2018). While there
are existing human-curated word sense invento-
ries for English such as such as WordNet (Miller,
1995), these are expensive to create and are un-
available for most languages. Panchenko (2016)
showed that sense embeddings learned using the
model of Bartunov et al. (2016) could be linked
with word senses contained in BabelNet (Navigli
and Ponzetto, 2012) with a reasonable degree of
precision, although the mapping struggled with re-
call. PolyLM represents a significant advance over
Bartunov et al.’s in terms of WSI performance, so
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(a) Word embeddings (b) Sense embeddings

Figure 1: An illustration of the meaning conflation deficiency, showing selected word and sense embeddings
learned by PolyLM visualized using t-SNE (Maaten and Hinton, 2008) and adjustText (Flyamer, 2017). Sense
embeddings were learned by training PolyLMSMALL with the standard 8 senses per word; word embeddings were
learned by training PolyLMSMALL, but with a single sense per word. Note that both models were trained on
unlemmatized data, unlike those used in the WSI experiments. The occurrence of closely related polysemous
words nearby in the word embedding space (i.e. left and right) causes unrelated words to be closer together (e.g.
left and wrong) and related words to be further apart (e.g. right and east) than they otherwise would be. The use
of sense embeddings avoids such distortion. PolyLM is capable of detecting comparatively rare word senses, such
as the political senses of left and right, and the use of smith and mason to refer to tradespeople.

it seems reasonable to imagine that this approach
to lexical resource construction might now be more
feasible.

The emergence of contextualized models such as
ELMo (Peters et al., 2018) and BERT (Devlin et al.,
2019) has had a tremendous impact on the area of
semantic representation. Rather than representing
words using a single embedding, or even a set of
sense embeddings, these models allow words to be
represented using an infinite set of possible embed-
dings depending on the context. This approach has
been very effective across NLP and many state-of-
the-art systems incorporate contextualized models,
including systems for WSD and WSI. The suc-
cess of contextualized models raises the question
of whether there is still value in learning discrete
sense representations.

However, contextualized models still rely on
word embeddings, and are therefore subject to
the meaning conflation deficiency. Furthermore
it could be argued that it is inefficient to have the
same representation size for all words regardless
of how diverse their range of senses is. Another
drawback is that before they can be applied to word
sense-related tasks, an adaptation step such as clus-

tering to induce discrete senses or fine-tuning is
generally required, which is often expensive in
terms of both research and compute time.

The contributions of this paper can be summa-
rized as follows:

• We propose PolyLM, an end-to-end, unsuper-
vised neural sense embedding model derived
from two simple assumptions about word
senses. We demonstrate that PolyLM learns
senses which correspond well to human no-
tions by showing that it performs well at WSI.

• PolyLM is flexible in that it can use any “con-
textualizer” (a useful term coined by Liu et al.
(2019)), so it will remain relevant as contextu-
alization techniques improve.

• We reduce the effect of the meaning conflation
deficiency by disambiguating word senses at
the input with a neural “disambiguation layer.”
We show that good performance on WSI can
be achieved using the output of this layer
alone, suggesting that it could be a useful com-
ponent in many neural networks for language
understanding.



2 Related Work

One of the first works in unsupervised learning of
sense representations was by Schütze (1998), who
proposed a two-step process, where vector repre-
sentations are first derived for each context contain-
ing an ambiguous word, and these are then clus-
tered into a pre-defined number of groups. Huang
et al. (2012) added a third step, where after sense-
labeling each word according to its context cluster,
sense representations are learned through neural
language modeling.

A number of later approaches employed a joint
training approach, where sense labeling and sense
representation learning happen in parallel. Nee-
lakantan et al. (2014), Li and Jurafsky (2015) and
Bartunov et al. (2016) each proposed multi-sense
variants of the Skip-Gram model (Mikolov et al.,
2013). Various approaches were tried for determin-
ing the number of senses per word: for instance,
Li and Jurafsky and Bartunov et al. used Chinese
Restaurant Processes and Dirichlet Processes re-
spectively to automatically learn an appropriate
number of senses for each word.

Many joint training approaches have the dis-
advantage that they create ambiguity in the con-
text representation by representing context words
with word embeddings in order to avoid consid-
ering the exponential number of possible sense
labelings for the context. Qiu et al. (2016) and
Lee and Chen (2017) propose purely sense-based
approaches which can sense-label the input effi-
ciently.

Arora et al. (2018) took a novel approach to
the problem of learning word senses, demonstrat-
ing that the embedding learned by traditional tech-
niques for an ambiguous word tends to be very
close to a linear combination of the hypothetical
vectors corresponding to its individual senses. They
proposed a method for recovering the underlying
sense vectors and coefficients, and evaluated their
system on WSI.

Since the emergence of contextualized models,
there have been a number of other systems which
have exploited their powerful semantic represen-
tations for specific tasks such as word sense dis-
ambiguation (Huang et al., 2019; Vial et al., 2019)
and induction (Amrami and Goldberg, 2018, 2019),
however none of these methods creates explicit
sense embeddings.

3 PolyLM

3.1 Overview

Consider a typical neural language model. Each
word w in a vocabulary V is assigned a single
embedding, resulting in an embedding matrix M ∈
R|V |×d, where d is the embedding dimensionality.
The probability of w occurring in a context c is
estimated as

P(w | c) =
[
softmax

(
My(c) + a

)]
w
, (1)

where y(c) ∈ Rd is a vector representation of c
and a ∈ R|V | is a trainable bias vector. In BERT
(Devlin et al., 2019) for instance, y(c) corresponds
to the final output of multiple Transformer encoder
layers (Vaswani et al., 2017).

Now suppose that for each w ∈ V ,
there is a corresponding set Sw of sememes,
or senses which w can have. For in-
stance, intuitively we might have Srock =
{rock:stone, rock:musical genre, rock:shake}. We
assume that the Sw are disjoint, i.e. Sw ∩ Sw′ = ∅
whenever w 6= w′, and we define the full sense
inventory S =

⋃
w∈V Sw.

Context induces specific senses for the words it
contains. Thus a passage of text can be thought of
as a sequence of sememes as well as a sequence of
words. The first observation underlying PolyLM
is that the probability of a word w occurring in a
context c is equal to the sum of the probabilities of
w’s component sememes occurring in the context,
i.e.

P(w | c) =
∑
s∈Sw

P(s | c). (2)

We wish to learn representations for individual
senses, and so we assign an embedding to each
sememe in our sense inventory, resulting in a matrix
E with dimension |S| × d and bias vector b of
dimension |S|. Note that this assumes that we know
the number of senses of each word a priori, an
assumption whose consequences we discuss later.
Following Eq. 1, we define the vector p(c) ∈ R|S|
of sememe probabilities in a context c as

p(c) = softmax
(
Ex(c) + b

)
. (3)

Considering Eq. 2, we have

P(w | c) =
∑
s∈Sw

p(c)s, (4)



allowing us to formulate the problem of learning
sense representations with a language modeling
objective.

PolyLM is constructed from three components:
the input layer, which represents the input tokens
as aggregates of their sense embeddings, the disam-
biguation layer, which attempts to determine the
contextually appropriate sense embeddings for the
input, and the prediction layer, which implements
the language modeling objective.

We adopt the masked language modeling (MLM)
task used for training BERT. When training, we se-
lect a subset T ⊂ {1, 2, ..., n} of the tokens in the
input sequence as targets for prediction, and pro-
duce a masked version c′ = w′1, w

′
2, ..., w

′
n of the

original sequence c = w1, w2, ..., wn as follows:
15% of tokens are chosen at random as targets, of
which 80% are replaced with a special [MASK]
token, 10% are replaced with a random token, and
10% are left unchanged.

3.2 Input Layer
We define a contextualizer to be a function
which maps a sequence of input representations
x1,x2, ...,xn ∈ Rd to a corresponding sequence
of output representations y1,y2, ...,yn ∈ Rd. Re-
current Neural Networks and Transformer architec-
tures are both commonly used as contextualizers
for language modeling. Typically the input repre-
sentations are drawn from an embedding matrix
I ∈ R|V |×d. It has become common (e.g. BERT)
to set I equal to O, the embedding matrix used at
the language modeling output, as recommended
by Press and Wolf (2017), and thus have a single
embedding matrix E.

The issue of input representation poses a prob-
lem for our model. Our output embeddings E ∈
R|S|×d correspond to sememes. We cannot straight-
forwardly tie our input and output embeddings as
Press and Wolf suggest, because we receive words
rather than sememes as input. We solve this prob-
lem by setting the input representation of a word to
be a convex combination of the representations of
its sememes, i.e.

x(w) =
∑
s∈Sw

λwses, (5)

where es is the row of E corresponding to sememe
s, and λw is a learnable weight vector with the
properties that

∑
s∈Sw

λws = 1 and λw ≥ 0 (in
practice, λw is the softmax of an underlying, un-
constrained variable vector).

3.3 Disambiguation Layer

The disambiguation layer attempts to infer the con-
textually appropriate sememe embeddings for the
input based on the conflated representations from
the input layer.

Representations x(w′1),x(w
′
2), ...,x(w

′
n) of c′,

calculated according to Eq. 5, are fed into a con-
textualizer instance CD, which outputs represen-
tations yD1 (c′),yD2 (c′), ...,yDn (c′). We use these
representations to calculate a probability distribu-
tion over each sense of the tokens in the input:

qDi (c′) = softmax
(
E(w′

i)yDi (c′) + b(w
′
i)
)
, (6)

where E(w′
i) is a submatrix of E containing only

the rows corresponding to senses of token w′i, and
similarly b(w

′
i) is a subvector of a learnable bias

vector b ∈ R|S|. In other terms,

qDis (c
′) =

ee
>
s yD

i (c′)+bs∑
s′∈Sw′

i

ee
>
s′y

D
i (c′)+bs′

, (7)

where s ∈ Sw′
i
. qDis (c

′) corresponds to the proba-
bility that the ith token in sequence c′ has sense
s.

The disambiguated representation of a token
could simply be its highest-probability sememe
embedding in the context, but to allow gradients to
flow through the disambiguation layer, we take the
sum of the sememe embeddings weighted by their
probabilities:

xP
i (c
′) =

∑
s∈Sw′

i

qDis (c
′)es. (8)

3.4 Prediction Layer

The prediction layer maps a sequence of disam-
biguated input representations onto a correspond-
ing set of output representations, and from each
output representation estimates the probability of
every sememe in the sense inventory occurring at
the corresponding position of the sequence.

Disambiguated representations
xP
1 (c
′),xP

2 (c
′), ...,xP

n (c
′) are fed into another

contextualizer instance CP , which returns output
representations yP1 (c

′),yP2 (c
′), ...,yPn (c

′). These
are used to calculate a probability distribution over
the entire sense inventory, as prescribed by Eq. 3:

pi(c
′) = softmax(EyPi (c

′) + b). (9)



i like apple pie .Unmasked sequence c

i like [MASK] pie .Masked sequence c′
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Disambiguation Transformer Encoder, CD
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′)

Disambiguation
output for c′

Disambiguated
input representations

Prediction Transformer Encoder, CP
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′) yP2 (c

′) yP3 (c
′) yP4 (c

′) yP5 (c
′)Output representations

p3(c
′)

.

.
apple1: 0.00006
apple2: 0.05164
apple3: 0.00012

.

.

Sense probabilities
summed to give word

probabilities for
masked words, used
to calculate language
modeling loss JLM

P(apple) =
0.00006 +
0.05164 +
0.00012

= 0.0518

JLM

qP3 (c
′, c)

apple1: 0.0011
apple2: 0.9966
apple3: 0.0022

yD1 (c) yD2 (c) yD3 (c) yD4 (c) yD5 (c)

qD3 (c)
apple1: 0.0426
apple2: 0.9084
apple3: 0.0403

JM

JD

JM encourages prediction
and disambiguation sense

probabilities to match,
JD encourages only one
sense of target word to
have high probability

Disambiguation
outputs for c

Disambiguation Transformer Encoder, CD

x(w1) x(w2) x(w3) x(w4) x(w5)Input embeddings for c

i like apple pie .Unmasked sequence c

Figure 2: Architecture diagram for PolyLM when training, illustrated on the sentence “I like apple pie.”, where the
word “apple” is chosen as a target and masked (note that “apple” is ambiguous when tokens are lower-cased, as
it may refer to a fruit or a technology company). At inference time, the bottom components (up to and including
qD(c)) do not need to be evaluated, and the sequence may not be masked at the input.



We define an additional set of probabilities qP

analogous to qD defined in Eq. 6:

qPi (c
′, c) = softmax

(
E(wi)yPi (c

′) + b(wi)
)
.
(10)

qPi takes both c′ and the unmasked sequence c
as arguments because we are interested in the sense
probabilities of the words wi that actually occurred.
qPi will be used later for defining the loss function
and is useful for downstream tasks.

3.5 Loss Function

We seek to minimize a loss function J with three
components, each of which is explained below:

J(c, c′, T ) = JLM (c, c′, T ) +

JD(c, c′, T ) +

JM (c, c′, T )

(11)

3.5.1 Language Modeling Loss
The language modeling loss JLM is defined as the
mean negative log likelihood of the target tokens
occurring:

JLM (c, c′, T )

=
−1
|T |
∑
i∈T

log P̂(wi | c′) (12)

=
−1
|T |
∑
i∈T

log
∑
s∈Swi

P̂(sememe i is s | c′)

(13)

=
−1
|T |
∑
i∈T

log
∑
s∈Swi

pis(c
′), (14)

where pi is as defined in Eq. 9.

3.5.2 Distinctness Loss
Recall that we assume in advance a number of
senses for each word. In practice we guess a rela-
tively high number to avoid missing senses. When
we overestimate the number of senses, we find that
two different sense embeddings for a word con-
verge to essentially the same meaning. The aim
of the distinctness loss is to ensure that each sense
has a distinct meaning, and to “kill off” superfluous
senses by causing them to have very low probabil-
ity in all contexts.

The second key observation of PolyLM is that
if the sememes corresponding to a word w are dis-
tinct, then in contexts where w occurs, we would

expect one of these sememes to have a high esti-
mated probability of occurring, and the rest to have
a low probability. The distinctness loss, given by,

JD(c, c′, T ) =
−1
r|T |

∑
i∈T

log
∑
s∈Swi

(
qPis(c

′, c)
)r
,

(15)

with hyperparameter r > 1, encourages this sep-
aration to occur. A full justification is given in
Appendix A.

3.5.3 Match Loss
Without extra supervision, the disambiguation layer
tends to very quickly allocate almost all of the
probability mass for a word to a single one of its
senses. This appears to be due to a “rich get richer”
effect in Eq. 8, where the sense embedding with
the highest weight has larger gradients associated
with it.

A more reliable source of sense probabilities is
the output of the prediction layer, as this is more
closely associated with the ground truth. Therefore
we encourage the disambiguation sense probabili-
ties qD to be similar to the prediction sense prob-
abilities qP by adding a sense probability “match
loss,” which is proportional to the cosine similarity
between qD and qP .

Because qDi (c′) is meaningless when token i is
replaced with [MASK], when calculating the match
loss we evaluate the disambiguation layer on the
unmasked sequence (shown with bottom-up arrows
in Figure 2), obtaining qDi (c). The match loss is
defined as

JM (c, c′, T ) =
−λM

|T |
∑
i∈T

qDi · qPi
‖qDi ‖‖qPi ‖

, (16)

where qDi and qPi are shorthand for qDi (c) and
qPi (c

′, c) respectively, and λM is a hyperparameter.
As we wish the disambiguation layer to learn

from the prediction layer rather than the other way
around, we do not allow gradients from the match
loss to propagate through qPi .

3.6 Details and Parameters

3.6.1 Preprocessing
To avoid the issue of how to represent a word’s
sense when it is broken into sub-word level to-
kens, our vocabulary consists of whole-word to-
kens. However the WSI tasks on which we evalu-
ate our model operate on the lemma level, so we



lemmatize our training corpus as described in Ap-
pendix B. The vocabulary consists of the ∼86K
tokens appearing more than 500 times in our train-
ing corpus, which like BERT’s consists of English
Wikipedia + BookCorpus (Zhu et al., 2015). All
tokens are lower-cased.

3.6.2 Contextualizers
One of the advantages of PolyLM is that it can be
used with any type of contextualizer - note however
that we must train our contextualizers together with
the rest of the model rather than using pretrained
contextualizer instances, because their word em-
bedding matrix would not match our sense embed-
ding matrix. In this paper we present results where
the disambiguation and prediction contextualizers
CD and CP use BERT’s implementation of the
Transformer encoder architecture.

3.6.3 Parameters
To keep the total number of embeddings reason-
able, we allow only the ∼10,000 tokens which oc-
cur more than 20,000 times in the training corpus,
or appear as focuses in the evaluation datasets, to
have multiple senses. Specifically, we assign these
tokens a fixed number of k = 8 embeddings, and
other tokens a single embedding. Since according
to Zipf’s law (Zipf, 1950), it is the most frequent
words which tend to have the most senses, we ex-
pect not to miss too many senses by assuming that
infrequent words are monosemous. We leave the
investigation of more sophisticated methods for
pre-allocating or dynamically updating the number
of senses for each token for future work.

We train two PolyLM models of different sizes,
PolyLMSMALL and PolyLMBASE. Due to the pro-
hibitive computational cost of training a model of
BERTLARGE’s size, we use significantly smaller
dimensions, as shown in Table 1.

Models were trained over 6,000,000 batches con-
sisting of 32 sequences of length 128 using the
Adam optimizer (Kingma and Ba, 2014). The
learning rate was increased linearly from 0 to
3e-5 over the first 10,000 batches, and then re-
duced linearly back to zero over the remaining
batches. The hyperparameters λM and r specific
to PolyLM’s loss function were first increased lin-
early and then left constant, λM from 0 to 0.1 over
the first 1,000,000 batches, and r from 1.0 to 1.5
over the first 2,000,000 batches.

It is important for r to be gradually increased in
this manner because if r is large initially, then the

effect of the distinctness loss reduces the diversity
of the senses learned. On the other hand, increasing
r too slowly seems to be detrimental to the senses’
distinctness.

4 Experiments

Word sense induction (WSI) is the task of inferring
the senses of a word in an unsupervised manner.
This is precisely the aim of our method, and so
is an ideal test task. We evaluate PolyLM on two
WSI datasets, SemEval-2010 Task 14 (Manandhar
et al., 2010) and SemEval-2013 Task 13 (Jurgens
and Klapaftis, 2013). Both datasets consist of pas-
sages containing one of a set of polysemous focus
words. The occurrences of the focus words in the
test set have been sense-labeled by human annota-
tors according to a reference sense inventory.

In the SemEval-2010 dataset, each instance is la-
beled with a single sense, whereas in the SemEval-
2013 dataset an instance may be labeled with sev-
eral relevant senses, each with a corresponding
weight denoting its degree of applicability in the
context.

Performance on SemEval-2010 is measured
using paired F-Score (F-S) and V-Measure (V-
M), and on SemEval-2013 using Fuzzy B-Cubed
(FBC) and Fuzzy Normalized Mutual Information
(FNMI). Overall performance on each task (AVG)
is typically defined as the geometric mean of its
two sub-metrics.

Currently, the best performing system on both
datasets is that of Amrami and Goldberg (2019).
Their system uses the idea of substitute vectors,
first devised by Başkaya et al. (2013). For each
instance, a set of most likely words that could have
occurred instead of the focus word is obtained from
the output of a language model. These sets are then
clustered, and each cluster is taken to correspond
to a different sense of the focus word. Amrami
and Goldberg use BERTLARGE as their language
model.

PolyLM can be used for WSI without any further
training. For the SemEval-2010 dataset, each in-
stance c is labeled with the sense of the focus word
wi which has the highest predicted probability, i.e.
argmaxs∈Swi

qPis(c
′, c), where c′ is formed from c

by replacing wi with [MASK]. For SemEval-2013,
we consider a sense applicable if it has a predicted
probability qPis(c

′, c) > pthresh, and the weight as-
signed to each applicable sense is its probability
qPis(c

′, c). We arbitrarily set pthresh to 0.2.



Model d Filter size No. attn. heads No. layers Seq. len. Vocab size No. embeddings Total params
PolyLMSMALL 128 512 8 4 (CD), 8 (CP ) 128 86K 157K 24M
PolyLMBASE 256 1024 8 4 (CD), 12 (CP ) 128 86K 157K 54M
BERTLARGE 1024 4096 16 24 512 30K 30K 340M

Table 1: Parameters of PolyLM and BERTLARGE.

System Version SemEval-2010 SemEval-2013
F-S V-M AVG FBC FNMI AVG

Amrami and Goldberg (2019) BERTLARGE 71.3 40.4 53.6 64.0 21.4 37.0
AutoSense (Amplayo et al., 2019) 62.9 10.1 25.2 61.7 8.0 22.2

PolyLM†
BASE 65.8 40.5 51.6 64.8 23.0 38.6
SMALL 65.6 35.7 48.4 64.5 18.5 34.5

Qiu et al. (2016)† - - - 56.9 6.7 19.5
SE-WSI-fix-cmp (Song et al., 2016)† 54.3 16.3 29.8 - - -
AdaGram (Bartunov et al., 2016)† 43.9 20.0 29.6 13.2 8.9 10.8
Arora et al. (2018)† k = 5 46.4 11.5 23.1 - - -

Table 2: Comparison of sense embedding models and WSI-specific techniques on the SemEval 2010 and 2013 WSI
tasks. SE-WSI-fix-cmp is based on Neelakantan et al. (2014)’s MSSG model. † - models which obtain explicit
sense embeddings.

Description SemEval-2010 SemEval-2013
F-S V-M AVG FBC FNMI AVG

PolyLMSMALL 65.6 35.7 48.4 64.5 18.5 34.5
No distinctness loss 53.5 33.4 42.3 57.4 16.3 30.5
No disambiguation layer 64.9 25.5 40.6 64.5 17.5 33.6
Disambiguation layer only 63.6 29.3 43.2 62.7 15.7 31.4

Table 3: PolyLM ablation study.

Results are shown in Table 2. Both PolyLM mod-
els comprehensively outperform previous sense em-
bedding methods. PolyLMBASE and Amrami and
Goldberg’s system slightly outperform each other
on one dataset each, suggesting similar overall pro-
ficiency at WSI. However it is worth noting that
the BERTLARGE language model used by Amrami
and Goldberg has more than six times as many
parameters as PolyLMBASE and is much more com-
putationally expensive to train and run.

PolyLM scales well for the sizes tested, with
PolyLMBASE outperforming PolyLMSMALL by 3.2
and 4.1 points in AVG score on the two datasets
with a 2.25x increase in the number of parame-
ters. Even if further increases in model dimen-
sions yielded much smaller improvements in per-
formance, it seems likely that a PolyLM model of
BERTLARGE’s 340 million parameter size would
achieve results significantly better than those of
Amrami and Goldberg (2019).

4.1 Ablation Study

We test three alternative configurations against
PolyLMSMALL: one where the distinctness loss
term is removed from the objective (“no distinct-
ness loss”), one where the disambiguation layer
is removed (“no disambiguation layer”), and one
where the disambiguation sense probabilities qD

are used in place of qP when performing WSI (“dis-
ambiguation layer only”). Note that the first two
configurations require new models to be trained,
whereas the last simply uses PolyLMSMALL in a
different way. Results are shown in Table 3.

The use of the distinctness loss has a big im-
pact on model performance, while the disambigua-
tion layer is somewhat less important but still use-
ful. The model still performs surprisingly well
when the disambiguation rather than the prediction
sense probabilities are used; these are the output of
only four Transformer layers and hence are much
cheaper to compute. This suggests that it might be
practical to add the disambiguation layer at the in-
put of various neural NLP models to improve their



understanding of polysemy.

5 Conclusions

PolyLM is a novel model of polysemy based on
two assumptions about word senses: firstly, that
the probability of a word occurring in a context is
equal to the sum of its individual senses occurring,
as expressed by the language modeling loss; and
secondly, that generally only one sense of a word
ought to have a high probability of occurring in
a given context, as expressed by the distinctness
loss. PolyLM does indeed learn word senses which
correspond well to human notions, as demonstrated
by its performance on word sense induction, which
matches that of the previous state-of-the-art system
despite having 6 times fewer parameters. It can be
easily applied to many word-sense related tasks,
as it generates a probability distribution over the
senses of each word in the input text. It is not
specific to any one contextualizer and so can be
improved as contextualizers improve.
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A Justification of the Distinctness Loss

Consider the derivative of the language modeling
loss for one particular target position i ∈ T with
respect to the pre-softmax scores e>k y

P
i + bk of the

target word wi’s sense embeddings k ∈ Swi . For
brevity, we define yk = e>k y

P
i + bk.
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Since qPik > pik, ∂
∂yk

JLM (c, c′, {i}) will always
be negative, meaning that every sense embedding
for the target word will always move towards the
contextualized representation yPi . This is unde-
sirable, because it means that even senses which
are irrelevant in a context will receive a positive
update.

Now consider the derivatives of the distinctness
loss:
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When r > 1, eryk∑
s∈Swi

erys is a “sharpened” version

of qPik(c
′, c): it is larger than qPik when qPik is large,

and smaller when qPik is small.
Now we have
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Thus the addition of the distinctness loss results in
even stronger reinforcement for senses which are
highly applicable in the context, and even weaker

https://doi.org/10.18653/v1/P16-1023
https://doi.org/10.18653/v1/P16-1023
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11


(possibly negative) reinforcement for senses which
are inapplicable. This encourages only one sense of
a word to have high probability in a given context,
as desired.

B Lemmatization

The training corpus and all text used for evalu-
ation are lemmatized as follows: first, we per-
form part-of-speech (POS) tagging using Stanford
CoreNLP’s POS tagger (Manning et al., 2014).
Any token with a tag associated with inflectional
morphology in English (NNS, JJR, JJS, RBR, RBS,
VBD, VBG, VBP, VBZ or VNB) is split into two
separate tokens, its lemmatized form and a special
token. There is a unique special token for each of
the above tags except the pairs JJR and RBR (com-
parative adjectives and adverbs) and JJS and RBS
(superlative adjective and adverbs), which share
[COMP] and [SUP] tokens respectively.


