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Abstract
Word embeddings (WE) have been shown to capture biases from the text they are trained on, which has led to
the development of several bias measurement metrics and bias mitigation algorithms (i.e., methods that transform
the embedding space to reduce bias). This study identifies three confounding factors that hinder the comparison
of bias mitigation algorithms with bias measurement metrics: (1) reliance on different word sets when applying
bias mitigation algorithms, (2) leakage between training words employed by mitigation methods and evaluation
words used by metrics, and (3) inconsistencies in normalization transformations between mitigation algorithms.
We propose a very simple comparison methodology that carefully controls for word sets and vector normalization
to address these factors. We conduct a component isolation experiment to assess how each component of our
methodology impacts bias measurement. After comparing the bias mitigation algorithms using our comparison
methodology, we observe increased consistency between different debiasing algorithms when evaluated using our
approach.
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1. Introduction
Word embedding (WE) models, which are map-
pings from discrete words to dense continuous
vectors, have been shown to reflect gender, racial,
and religious stereotypes from the corpus on
which they are trained (Bolukbasi et al., 2016),
(Manzini et al., 2019). To address this issue,
two types of solutions have emerged: 1) met-
rics for quantifying bias levels, such as WEAT
(Bolukbasi et al., 2016) and ECT (Dev and Phillips,
2019)), and 2) mitigation algorithms aimed at re-
ducing bias within the model, such as Hard Debias
(Bolukbasi et al., 2016) and Half-Sibling Regres-
sion (Yang and Feng, 2020).
When it comes to benchmarking different mitiga-
tion methods, an intuitive approach is to measure
the bias in pre-trainedWEmodels before and after
applying each mitigation method, using the met-
rics mentioned above. However, previous work
has not systematically compared these methods,
and there are significant discrepancies and inter-
dependencies between methods and metrics that
can affect the reliability of the results.
In this paper, we identify three primary issues
that contribute to inaccurate comparisons between
bias mitigation algorithms in their original imple-
mentation settings: 1) inconsistency in the se-
lection of input words for debiasing, 2) overlap
between words used for learning mitigation algo-
rithms, and bias measurement metrics, and 3)
vector normalization performed by certain algo-
rithms. We propose a simple methodology to ad-

dress these concerns and promote a more robust
comparability.
Our approach enforces the use of identical word
sets, introduces constraints to manage overlap
between methods and metrics, and adopts con-
sistent vector normalization transformations. Fur-
thermore, we present a case study comparing the
impact of different mitigation algorithms on various
metrics using both the default approach and our
proposed methodology.
We perform all experiments on gender1 bias be-
cause most of mitigation algorithms are specifi-
cally designed to address this type of bias. We use
the glove-wiki-gigaword-300 as our target word
embedding model and evaluate its bias using var-
ious metrics. We assess bias before and after ap-
plying transformations from different bias mitiga-
tion algorithms, considering different settings.
We utilize the available bias mitigation meth-
ods and metrics provided in the WEFE frame-
work (Badilla et al., 2020) for our experiments.
Specifically, we focus on six bias measurement
metrics: WEAT (Caliskan et al., 2017), WEAT ES
(Caliskan et al., 2017), RND (Garg et al., 2018),
RNSB (Sweeney and Najafian, 2019), ECT (Dev
and Phillips, 2019), and RIPA (Ethayarajh et al.,
2019), and four bias mitigation algorithms: Hard
Debias (HD) (Bolukbasi et al., 2016), Double Hard
Debias (DHD) (Wang et al., 2020), Repulsion At-

1We recognize that addressing gender as a binary
variable is a delicate issue. Further exploration of this
matter is detailed in our ethics statement.



traction Neutralization (RAN) (Kumar et al., 2020),
and Half Sibling Regression (HSR) (Yang and
Feng, 2020).
The rest of the paper is organized as follows. In
Section 2 we offer an overview of previous work
that is relevant to our research. Then, in Sections
3 and 4, we describe the relevant issues for com-
paring bias mitigation algorithms and propose how
to address them. In Section 5, we comprehen-
sively present our experiments, including their ex-
perimental setups, the comparative results of bias
mitigation algorithms, both with andwithout the ap-
plication of our proposed methodology. This sec-
tion compares these two sets of results and dis-
cusses the variations observed when implement-
ing our methodology. It also includes an analysis
of isolated components that dissects our proposed
methodology to evaluate the impact of each com-
ponent. Finally, in Section 6, we present the con-
clusions drawn from our research.

2. Related Work
As mentioned above, word embedding models
tend to capture and reflect biases present in the
data they are trained on. Research in this field
has focused primarily on the development of bias
measurement metrics aimed at quantifying the bi-
ases contained in word embedding models, as
well as bias mitigation algorithms designed to re-
duce these biases.
In this section, we begin by presenting the metrics
used to measure bias in our study. We provide
a concise description of the principles underlying
these metrics and how they measure bias in word
embeddings. We then elaborate on bias mitigation
algorithms, explaining their methodologies for bias
mitigation within these models.

2.1. Metrics
Previous research in the field has introduced var-
ious bias measurement metrics for word embed-
ding models. These metrics share a common goal
of quantifying the bias contained in these models
but employ distinct methodologies to achieve this
objective. In general, they measure the associa-
tion between words that define a bias group and
words typically associated with that group. Below,
we provide brief descriptions of the six bias mea-
surement metrics employed in our study.
The Word Embedding Association Test (WEAT),
as proposed by Caliskan et al. (2017), is a met-
ric designed to assess the level of association be-
tween two pairs of word sets. These pairs of word
sets represent, on one hand, the social groups un-
der examination, and on the other, various traits
or professions that might be associated with these
social groups. In addition to WEAT, the same au-
thors proposed the WEAT Effect Size (WEAT ES)

(Caliskan et al., 2017). This metric represents a
normalized measure of how distinct the two dis-
tributions of associations are between a word set
representing a social group and a word set con-
taining traits that could be associated with it.
Relative Norm Distance (RND), as introduced by
Garg et al. (2018), is a metric designed to capture
the relative strength of association between a set
of neutral words, which are not intrinsically related
to any specific social group, and two sets of words
that represent different social groups.
Relative Negative Sentiment Bias (RNSB), a met-
ric proposed by Sweeney and Najafian (2019), is
based on the idea that in the absence of bias, all
words should exhibit similar levels of negativity.
RNSB measures how negative words that define
target social identity groups are.
The Relational Inner Product Association (RIPA)
(Ethayarajh et al., 2019), calculates the dot prod-
uct between a word that should be neutral to bias
and a vector representing the difference between
a pair of words that define the bias group.
Finally, Embedding Coherence Test (ECT) a met-
ric proposed by Dev and Phillips (2019), focuses
on measuring the degree of association between
a set of professions and gendered word pairs.
These metrics are standardized and unified within
a common interface, facilitating their interchange-
ability within the WEFE library (Badilla et al.,
2020). In the library’s metrics interface, each met-
ric operates on a query, which consists of target
and attribute word sets. These sets represent the
social groups and words associated with them. By
supplying a query that contains these sets along
with a pre-trained word embeddingmodel, one can
measure bias within the model using these met-
rics.

2.2. Algorithms
To address the concern of bias in word embed-
dings, various bias mitigation algorithms have
been developed. These algorithms aim to dimin-
ish the bias present in word embedding models
through diverse approaches. In general, they fo-
cus on learning bias from words that define the so-
cial groups and adjust the embedding space to en-
sure that biased words are all at a similar distance
from the bias space.
Bolukbasi et al. (2016) proposed Hard Debias
(HD), an algorithm that identifies the direction re-
sponsible for capturing bias and then subtracts it
from words that should be considered neutral.
Similarly, Wang et al. (2020) argued that word fre-
quency in training corpora plays a significant role
in bias, which limits the effectiveness of HD. To ad-
dress this issue, they proposed Double Hard De-
bias (DHD) (Wang et al., 2020), which mitigates
bias by subtracting the frequency direction that in-



fluences bias and then applying Hard Debias.
Another algorithm to consider is Half Sibling Re-
gression (HSR) proposed by Yang and Feng
(2020). HSR is founded on a confounding-noise-
elimination approach. It employs causal inference
techniques to identify and subtract spurious gen-
der information from biased vectors.
Repulsion Attraction Neutralization (RAN) is a bias
mitigation algorithm introduced by Kumar et al.
(2020). With this algorithm, the authors claim not
to only eliminate the bias present in word vectors,
but also to alter the spatial distribution of its neigh-
bours’ vectors achieving a bias-free setting while
maintaining minimal semantic offset.
The algorithms described above are implemented
within a common interface in the WEFE library
(Badilla et al., 2020), similar to the metrics, which
allows them to be interchangeable. These algo-
rithms operate on sets of words representing the
bias groups, words to which the bias is to be miti-
gated, and words to ignore during the process.

3. Word Interaction
In this section, we examine the interaction be-
tween the word sets used in bias mitigation algo-
rithms and bias measurement metrics, identify po-
tential issues arising from this interaction, and pro-
pose mechanisms to mitigate them. There are five
word sets involved in the process: 1) target and 2)
attribute words from the metrics, and 3) gender-
specific, 4) bias definition, and 5) objective words
from the algorithms. We describe them below:

Target words are used to denote specific social
identity groups defined by criteria such as gender,
religion, or race. These criteria can include any
characteristic, trait, or origin that distinguishes dif-
ferent groups of people from one another (Badilla
et al., 2020).

Attributes include words that represent atti-
tudes, traits, characteristics, occupations, among
others. In a fair setting, these attributes should
have equal associations with individuals from each
social group (e.g., occupations, affective words)
(Badilla et al., 2020).
Bias metrics typically operate by quantifying asso-
ciations between a minimum of one attribute set
and a minimum of two targets (e.g., male vs. fe-
male) and then contrasting these associations with
a fair setting where attributes exhibit equal associ-
ations with each group.

Bias Definition refers to a set of word pairs de-
rived from two contrasting identity groups utilized
by mitigation algorithms to learn and address the
intended bias direction. These words consistently
represent male and female groups in bias defini-
tion methods (e.g., man-woman, he-she, girl-boy).

Gender Specific includes words that are asso-
ciated with gender by definition but do not neces-
sarily define the identity group (e.g., beard, womb,
testosterone) (Bolukbasi et al., 2016). These
words inherently contain gender-related connota-
tions, so the bias mitigation process is not applied
to them. Note that bias definition words are also
included in this set.
Objective is the set of words to which the bias
mitigation process is applied, which is usually the
complement of the gender-specific set. These
words are expected to be unrelated to the target
identity groups.
Mitigation algorithms typically learn a transforma-
tion of the embedding space using bias definition
words, which is then applied to the objective set,
excluding gender-specific words.
The original implementations of the algorithms ex-
hibit variability in the selection of words within
sets. We argue that this variability introduces addi-
tional uncertainty into the observed bias changes
that cannot be attributed solely to the algorithms
themselves. To address this concern, we propose
adopting a standardized set of words across algo-
rithms, thereby controlling for this variable.
In our study, we construct the bias definition set by
combining the male and female sets from (Garg
et al., 2018) with the definition pairs from (Boluk-
basi et al., 2016). The gender-specific set is taken
from (Bolukbasi et al., 2016). For the objective
word set, we consider the entire vocabulary of the
model, excluding the words in the gender-specific
set.
As was mentioned in Section 2.1, the metrics were
already standardized by (Badilla et al., 2020), so
we adopt their approach for the gender queries
set, which incorporates word sets from (Caliskan
et al., 2017), (Garg et al., 2018), (Hu and Liu,
2004), and (Manzini et al., 2019).
We can now proceed to analyze the second issue
addressed in our study, which focuses on the over-
lap between the words utilized for learning mitiga-
tion algorithms and the biasmeasurement metrics.
We present their intersections in Table 1.

Algorithms
Metrics Attributes (6,894) Target (40)

Objective (398,559) 6,500 0
Bias Definition (44) 0 40

Gender Specific (1,449) 5 40

Table 1: Size of the intersections between word
sets. The size of each set is given in brackets after
its name.

We argue that the overlap between sets may hin-
der accurate bias measurement and comparison
of bias mitigation algorithms. On the one hand,
there are considerable similarities in the defini-



tion of certain sets used in both mitigation algo-
rithms and metrics. It is crucial to avoid introduc-
ing inconsistencies by allowing words to be part
of opposite sets. In addition, we hypothesize that
words used for learning bias mitigation should be
excluded from the evaluation to ensure general-
ization in the measurement, similar to the separa-
tion of training and test sets in standard supervised
machine learning problems.
An instance illustrating the undesired intersections
between the word sets is the intersection between
Gender-Specific and Attributes. In this overlap,
words such as “maid,” “heroine,” “mistress,” “wom-
anizer,” and “hellion” are identified. These words
are considered to carry gender bias by definition
and are thus excluded from the debiasing process.
However, they are still utilized as part of the bias
measurement, despite not being included in the
debiasing process itself.
To address this problem concerning the overlap of
word sets, we propose implementing constraints
on the intersection of the different word sets, as
detailed in Table 3. The proposed word set con-
straints are as follows:

Objective/Attributes The attributes set should
be entirely contained within the objective set to en-
sure that words expected to be unrelated to social
identity groups (i.e., attribute words) are mitigated.

Objective/Target The target set should not
overlap with the objective set. This is crucial be-
cause the target words inherently represent spe-
cific social identity groups, and applying mitigation
techniques to themwould directly impact their abil-
ity to represent those groups accurately.

Bias Definition/Attributes These sets are de-
fined as opposites and hence, should not over-
lap. The bias definition set contains words that de-
fine social identity groups (e.g., male and female
words), while attribute words are expected to be
independent of these criteria.

Bias Definition/Target: Although both the bias
definition and target sets contain words that define
social identity groups, avoiding overlap between
them is important. We expect that mitigation algo-
rithms should generalize beyond the words used
to learn the transformation. Assessing bias on the
same words used for learning would lead to overly
optimistic results. This restriction is analogous to
the standard practice of separating training and
test data in supervised machine learning.

Gender Specific/Target: The target set should
be entirely contained within the gender-specific set
to avoid bias mitigation on words that define social
identity groups.

Gender Specific/Attributes: To maintain inde-
pendence between gender and attributes, the at-

tribute and gender-specific sets should not over-
lap. This ensures that attribute words, which are
intended to be gender-neutral, can be accurately
evaluated by the metric after mitigation. This con-
straint does not affect the generalization of the
measurement as mitigation algorithms do not rely
on the attribute set for learning the transformation.
To meet the above constraints, we propose to con-
struct the word sets in the following way: First,
we create a list of female/male word pairs for the
target and bias definition sets without repeating
words. Next, we expand the list to include addi-
tional word pairs that define the female and male
groups. We search for synonyms in dictionaries
to find suitable pairs, resulting in 24 word pairs
presented in Table 2. The details regarding the
sources of the words can be found in Appendix 8.1.
Then, we manually rank these pairs based on
their representation of the target groups. Then, to
evenly distribute these pairs for our target and bias
definition words, we assign odd ranking numbers
to the bias definition words and even ranking num-
bers to the target words. Afterwards, for gender-
specific words, wemake sure that every word from
the target word set is included in this set. We also
delete from this set any word that is included in the
attributes set. Finally, we consider the entire vo-
cabulary of the embedding model as the objective
word set after excluding any words present in the
gender-specific set.

4. Vector normalization
Two of the algorithms included in our study, Hard
Debias (HD) and Repulsion Attraction Neutraliza-
tion (RAN), use vector normalization as a pre-
processing step in their mitigation process. This
involves normalizing all word vectors to the Eu-
clidean norm before applying the respective algo-
rithms. However, it has been found that vector
length contains valuable information within word
embeddings (Ethayarajh et al., 2019), as the ma-
trix factorized by the embedding model cannot be
reconstructed solely with normalized embeddings.
To explore this further, we present the bias analy-
sis of our target glove model before and after vec-
tor normalization in Table 4. The results show that
vector normalization affects three metrics: RND,
RNSB, and RIPA. This finding highlights that algo-
rithms that use vector normalization and those that
do not are not directly comparable.
To address the impact of vector normalization on
bias measurement, we propose two approaches
for a fairer comparison between algorithms: 1)
normalize the model before bias mitigation for al-
gorithms that do not perform it, or 2) reverse the
normalization performed by any algorithm (e.g.,
HD, RAN) after mitigation by rescaling the re-
sulting vectors to their original norm. We con-



Female Male
she he

woman man
female male
femenin masculine
her him

herself himself
lady gentleman

madam sir
miss mister
girl boy
gal guy

girlfriend boyfriend
mother father
mom dad
wife husband

grandmother grandfather
daughter son
sister brother
aunt uncle
niece nephew
actress actor
Mary John

princess prince
queen king

Table 2: Twenty-four word pairs used as bias def-
inition and target. The set is divided equally, with
half used as bias definition and the other half as
target, ensuring no overlap as proposed in our
methodology.

Algorithms
Metrics Attributes Target

Objective |Attributes| ∅
Bias Definition ∅ ∅
Gender Specific ∅ |Target|

Table 3: Proposed intersections between word
sets of metric and mitigation algorithms.

Metrics
Models Glove Glove Normalized

WEAT 0.8446 0.8446
WEAT ES 0.6556 0.6556

RND 0.1832 0.0252
RNSB 0.0859 0.0177
RIPA 0.2274 0.0344
ECT 0.8234 0.8190

Table 4: Comparison of the bias between the orig-
inal model and its normalized version according to
the metrics.

sider the second approach to be more appropri-
ate as it preserves the information carried by vec-
tor length as recommended in (Ethayarajh et al.,
2019). Nonetheless, we conduct experiments with
both approaches for a comprehensive analysis.

5. Experiments
In this section, we provide a comprehensive
overview of our experimental setup and present
the results of our comparison, covering both our
baseline methodology and the comparison per-
formed using our proposed approach. We will be-
gin by describing the experimental settings, fol-
lowed by the presentation of the results, and a dis-
cussion of the findings.

5.1. Experimental Setting
For all our experiments, we utilize the glove-wiki-
gigaword-300 model, which is accessible through
Gensim2, given that it is a model widely used in
the field.
Our baseline setup consists of applying the four
bias mitigation algorithms described in Section
2.2, namely, HD, DHD, RAN, and HSR. These al-
gorithms are applied to the word embeddingmodel
chosen for our experiments, employing the de-
fault settings from their original implementations.
Subsequently, we assess the model’s bias levels
both before and after mitigation, according to the
metrics WEAT, WEAT ES, RND, RNSB, ECT, and
RIPA.
For the Hard Debias method, we adopt the
word sets proposed in the original implementation
(Bolukbasi et al., 2016) for the definition of gender-
specific words and bias definition. As our objec-
tive set, we consider the entire vocabulary of the
model, excluding the words present in the gender-
specific set.
Regarding the Repulsion Attraction Neutralization
technique, the original proposal suggests a spe-
cific set of words to exclude from the debiasing
process. Unfortunately, we do not have access to
these sets, so we resort to using the same sets
used for Hard Debias to define gender-specific
words and bias definition. Similarly, we use the
entire vocabulary of themodel as our objective set,
except for the words in the gender-specific set.
For the Double Hard Debias method, the origi-
nal implementation uses the 1,000 most biased
female words and the 1,000 most biased male
words, identified by their similarity to the terms
“she” and “he”, respectively, as the objective set.
Consistent with this setup, we replicate this con-
figuration in our baseline experiment, ignoring
gender-specific words and adopting the bias defi-
nitions proposed by (Bolukbasi et al., 2016).
In the original implementation of Half Sibling Re-
gression (Yang and Feng, 2020), a set of 223 male
and 223 female words is used as the bias def-
inition and gender-specific set, available in their
GitHub repository. The mitigation process is then

2https://github.com/RaRe-Technologies/
gensim

https://github.com/RaRe-Technologies/gensim
https://github.com/RaRe-Technologies/gensim


performed on words not included in this set. We
replicate this setup in our baseline experiment to
ensure consistency.
We then repeat the process using our proposed
methodology, which enforces the use of the same
word sets and follows the constraints outlined in
Section 3. Furthermore, to mitigate the concerns
regarding normalization, we implement the two ap-
proaches delineated in Section 4: first, we reverse
the normalization performed by the algorithms that
employ it, and in a separate experiment utilizing
our methodology, we normalize the word embed-
ding model before the bias mitigation for algo-
rithms that do not include this step in their oper-
ations.

5.2. Comparison of Algorithms
The results for all of our experiments are pre-
sented in Table 5. This includes our baseline com-
parison and the evaluations performed using our
proposed methodology for both approaches: re-
versing the normalization and pre-normalization of
the model prior to bias mitigation. In these ta-
bles, the arrow next to the metric name repre-
sents the desired direction of change in the metric.
Each value of the change in the metric is accom-
panied by a ranking that indicates the performance
of each algorithm according to that metric. In each
subtable, the final column presents the standard
deviation of metric variations for eachmethod. Ad-
ditionally, the last two rows include the average
standard deviation across metrics denoted as σ
and the corresponding p-value obtained from a
two-sided, two-sample t-test comparing the aver-
age standard deviations between the different set-
tings of the proposed methodology and the base-
line. We utilize these p-values with a significance
level of 0.005 to determine whether a given varia-
tion of our methodology effectively reduces vari-
ability in bias metrics across different debiasing
methods with respect to the baseline.
In the original setting (first subtable of Table 5),
the HD and RAN algorithms perform significantly
better than DHD and HSR. However, when apply-
ing our proposed methodology (two last subtables
of Table 5), we observe a reduction in the perfor-
mance gap between the algorithms and a notable
improvement in the performance of DHD when re-
ducing bias in the model for both approaches for
treating the normalization.
In addition, when examining the standard devia-
tions of the results when reverting the normaliza-
tion (second subtable of Table 5), we see a sig-
nificant reduction (p-value of 0.04) in the variability
of bias reduction among the algorithms. This sug-
gests that by removing the variability introduced by
word sets and vector normalization, we can more
objectively evaluate the algorithms and more ac-

curately understand their potential for bias mitiga-
tion.
Conversely, when we normalize the model before
implementing the normalization (last subtable of
Table 5), we observe a smaller and statistically in-
significant reduction in the standard deviation (with
a p-value of 0.08). When comparing both cases of
our methodology, we note some changes in the
results obtained by certain metrics that were unaf-
fected by normalization when comparing the nor-
malized model with the original (as seen in Table
4). This could imply that normalization might influ-
ence the operations performed by algorithms that
do not typically employ it.
Our methodology is designed to compare algo-
rithms in a controlled setting, ensuring that none
is favored during the process. The results indicate
that algorithms tend to reduce bias more similarly
to each other when this approach is taken, as seen
in Figure 1, both approaches of our methodology
reduce variability in the results compared to the
baseline.

5.3. Analysis of Isolated Components
In this section, we perform an isolated component
analysis of our proposed methodology. Our aim is
to methodically assess the influence of each step,
which includes word set standardization, the man-
agement of word set overlap, and vector normal-
ization, on the outcomes of our bias mitigation and
measurement process. The results of this analysis
are summarized in Table 6.
First, we assess the impact of solely standardizing
the word sets utilized by the algorithms as detailed
in Section 3. We apply the algorithms to the model
while only considering this aspect of our method-
ology.
The experimental results reveal a σ difference of
0.07 (0.162 − 0.092) between this setting and the
baseline, suggesting that standardizing word sets
effectively reduces variability between debiasing
methods and the baseline. However, it is worth
noting that this reduction in variability is not sta-
tistically significant at a significance level of 0.005
(p-value of 0.16).
One notable observation is the improvement in the
bias mitigation performed by DHD observed in this
setting, which is consistent with the results of the
application of our methodology (as shown in Ta-
ble 5). This confirms that a significant part of this
improvement can be attributed to the standardiza-
tion of the word sets. In the baseline, the algorithm
works on a limited number of words, whereas other
algorithms are applied to a larger set of words,
making them not directly comparable.
The results obtained here highlight the importance
of controlling word sets, as it enhances the compa-
rability of algorithms in bias mitigation evaluations.



Baseline methodology

∆ Metrics
Models HD DHD HSR RAN σ

WEAT (↓) -0.756 (1) -0.058 (4) -0.647 (3) -0.677 (2) 0.320
WEAT ES (↓) -0.519 (1) -0.030 (4) -0.145 (3) -0.428 (2) 0.230

RND (↓) -0.177 (1) -0.010 (3) -0.007 (4) -0.176 (2) 0.097
RNSB (↓) -0.094 (1) -0.027 (3) 0.007 (4) -0.092 (2) 0.043
RIPA (↓) -0.221 (1) -0.014 (4) -0.197 (3) -0.213 (2) 0.098
ECT (↑) 0.144 (1) 0.009 (3) -0.55 (4) 0.132 (2) 0.185

σ: 0.162
Proposed methodology reversing normalization

∆ Metrics
Models HD DHD HSR RAN σ

WEAT (↓) -0.376 (1) -0.317 (3) -0.236 (4) -0.324 (2) 0.050
WEAT ES (↓) -0.429 (1) -0.283 (3) -0.166 (4) -0.328 (2) 0.094

RND (↓) -0.031 (3) -0.113 (1) 0.027 (4) -0.038 (2) 0.049
RNSB (↓) -0.008 (2) -0.010 (1) -0.0008 (3) 0.006 (4) 0.006
RIPA (↓) -0.057 (3) -0.002 (4) -0.094 (1) -0.064 (2) 0.033
ECT (↑) 0.061 (2) 0.027 (3) -0.152 (4) 0.077 (1) 0.091

σ: 0.053
p-value 0.04

Proposed methodology normalizing the model before debias

∆ Metrics
Models HD DHD HSR RAN σ

WEAT (↓) -0.376 (2) -0.386 (1) -0.0125 (4) -0.324 (3) 0.153
WEAT ES (↓) -0.429 (1) -0.426 (2) -0.005 (4) -0.328 (3) 0.173

RND (↓) -0.008 (3) -0.016 (1) -0.0004 (4) -0.010 (2) 0.005
RNSB (↓) -0.003 (2) -0.005 (1) 0.0004 (4) -0.003 (3) 0.001
RIPA (↓) -0.013 (2) -0.013 (1) -0.0009 (4) -0.012 (3) 0.005
ECT (↑) 0.058 (2) 0.039 (3) -0.009 (4) 0.078 (1) 0.032

σ: 0.061
p-value 0.08

Table 5: Comparison of Metric Changes by Algorithms in the Original Setting and ProposedMethodology.
The arrow next to the metric name indicates the desired direction of change in the metric. Each change in
themetric value is accompanied by a ranking that reflects the algorithm’s performance on that metric. The
displayed p-value represents a two-sided, two-sample t-test comparing the average standard deviation
across metrics between a setting of our methodology and the baseline.

Figure 1: Comparison of the Mean Standard Deviation Across All Experiments. ’Proposed Methodology
1’ represents the results when reversing normalization, and ’Proposed Methodology 2’ when normalizing
the model before debias.

Next, we investigate the isolated impact of manag- ing the overlap between the word sets employed



Standardize word sets

∆ Metrics
Models HD DHD HSR RAN σ

WEAT (↓) -0.6731 (2) -0.6484 (3) -0.385 (4) -0.6774 (1) 0.122
WEAT ES (↓) -0.4086 (2) -0.3202 (3) -0.1321 (4) -0.4289 (1) 0.117

RND (↓) -0.177 (1) -0.0609 (3) -0.0365 (4) -0.1761 (2) 0.064
RNSB (↓) -0.0705 (2) -0.0371 (3) 0.0464 (4) -0.0755 (1) 0.048
RIPA (↓) -0.2154 (1) -0.1457 (3) -0.1046 (4) -0.2133 (2) 0.046
ECT (↑) 0.1431 (1) 0.1171 (3) -0.2201 (4) 0.1326 (2) 0.152

σ: 0.092
p-value 0.16

Manage overlap between sets

∆ Metrics
Models HD DHD HSR RAN σ

WEAT (↓) -0.4580 (1) -0.0290 (4) -0.2362 (3) -0.3245 (2) 0.155
WEAT ES (↓) -0.5555 (1) -0.0229 (4) -0.1660 (3) -0.3287 (2) 0.198

RND (↓) -0.3246 (1) -0.0058 (3) 0.0278(4) -0.3114 (2) 0.164
RNSB (↓) -0.0537 (1) 0.0126 (4) 0.0107 (3) -0.0528 (2) 0.032
RIPA (↓) -0.1986 (1) -0.0130 (4) -0.0946 (3) -0.1902 (2) 0.076
ECT (↑) 0.0850 (1) 0.0036 (3) -0.1526 (4) 0.0801 (2) 0.096

σ: 0.120
p-value 0.23

Reverse vector normalization

∆ Metrics
Models HD DHD HSR RAN σ

WEAT (↓) -0.7561 (1) -0.0587 (4) -0.6479 (3) -0.6774 (2) 0.277
WEAT ES (↓) -0.5193 (1) -0.0301 (4) -0.1456 (3) -0.4289 (2) 0.344

RND (↓) -0.1527 (1) -0.0100 (3) -0.0076 (4) -0.0956 (2) 0.061
RNSB (↓) -0.0142 (2) -0.0006 (3) 0.0240 (4) -0.0156 (1) 0.015
RIPA (↓) -0.1902 (2) -0.0148 (4) -0.1971 (1) -0.1265 (3) 0.073
ECT (↑) 0.1458 (1) 0.0090 (3) -0.2552(4) 0.1340 (2) 0.161

σ: 0.155
p-value 0.92

Table 6: Comparison of Metric Changes by Algorithms when performing the isolation of components
study. The arrow next to the metric name indicates the desired direction of change in the metric. Each
change in the metric value is accompanied by a ranking that reflects the algorithm’s performance on
that metric. The displayed p-value represents a two-sided, two-sample t-test comparing the average
standard deviation across metrics between an isolated component of our methodology and the baseline.

by metrics and algorithms, as described in Section
3. In this setting, our sole focus is on managing
this overlap without altering the word sets in any
other manner.
The results of our second analysis show that this
specific component, when analyzed in isolation,
manages to reduce the value of σ by 0.042 aver-
age standard deviation points (0.162− 0.12). This
reduction is less pronounced than in the previous
analysis and is also not statistically significant (p
value of 0.23) at the 0.005 level of significance.
However, it is important to emphasize that the pri-
mary purpose of controlling word set overlap be-
tween algorithms and metrics is not only to make
debiasingmethods comparable, but also to ensure
accurate measurement of bias reduction by re-
moving dependencies between methods and met-
rics.
Finally, we investigate the influence of consistent
vector normalization transformations on the re-
sults, by applying the algorithms and reversing the

normalization performed by HD and RAN, while
keeping all other settings consistent with our base-
line.
This setting, only focusing on vector normaliza-
tion, does not seem to have a significant impact on
the results. While there is a reduction in variabil-
ity, it is not statistically significant (p-value of 0.92).
This lack of significant impact can be attributed to
normalization only affecting certain metrics con-
sidered in the study. However, it is crucial to em-
phasize that vector normalization remains highly
important when aiming for a fair comparison of the
algorithms, as it ensures that differences in bias
are not altered by the normalization of the vectors
and are purely an effect of applying the algorithms.
This study has highlighted that while each part,
when isolated, may not significantly impact the
variability of the results, their collective application
leads to more comprehensive and objective eval-
uations of these algorithms. As seen in Figure 1,
all of the components reduce variability, but not as



much as the entire methodology. This not only em-
phasizes that all of the components together lead
to a more comprehensive and objective evaluation
of these algorithms, but each of them is essential
when pursuing a fairer comparison among algo-
rithms.

6. Conclusion
In this paper, we address concerns related to the
comparison of bias mitigation algorithms, specif-
ically focusing on the word sets used in the pro-
cess and the pre-processing steps, including vec-
tor normalization. To address these concerns we
introduced amethodology for comparing word em-
beddings bias mitigation algorithms by standard-
izing word sets, enforcing constraints between
word sets, and controlling vector normalization.
Our results show that when these variables are
controlled, the performance of the algorithms be-
comes more consistent.
This phenomenon is common in NLP, where as
a given problem gains popularity, a multitude of
research papers emerge, each claiming the su-
periority of its proposed method based on its ex-
perimental results. However, it is often the case
that when these methods are evaluated in a stan-
dardized, comparable, and impartial manner, the
reported differences between them tend to dissi-
pate, as emphasized by Melis et al. (2018). Our
findings are consistent with this body of research.
We also looked at each component of our method-
ology individually and found that while some com-
ponents contribute to reduced variability, it is their
combined effect that leads to a statistically signifi-
cant reduction.
We hope that this straightforward approach will en-
courage the research community to evaluate bias
mitigation methods in word embeddings systemat-
ically.
For future research, we plan to extend our method-
ology to contextualized embeddings and large lan-
guage models. We aspire to expand our work to
diverse languages and various forms of bias.
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8. Appendix
8.1. Word Pairs
We construct the word pairs set by combining the
word pairs proposed as definition pairs by (Boluk-
basi et al., 2016), the female and male words pro-
posed by (Garg et al., 2018), and additional words
obtained from dictionaries. Here, we provide de-
tails on the origin of each word pair.
Definition pairs:

1. woman/man

2. girl/boy

3. she/he

4. mother/father

5. daughter/son

6. gal/guy

7. female/male

8. her/his

9. herself/himself

10. Mary/John

Female and male words:

1. she/he

2. daughter/son

3. hers / his

4. her/him

5. mother/father

6. woman/man

7. girl/boy

8. herself/himself

9. female/male

10. sister/brother

11. daughters/sons

12. mothers/fathers

13. women/men

14. girls/boys

15. females/males

16. sisters/brothers

17. aunt/uncle

18. aunts/uncles

19. niece/nephew

20. nieces/nephews

Words from dictionaries:

1. feminine/masculine

2. lady/gentleman

3. madam/sir

4. miss/mister

5. girlfriend/boyfriend

6. mom/dad

7. wife/husband
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8. grandmother/grandfather

9. actress/actor

10. princess/prince

11. queen/king
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