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ABSTRACT
Usually time series are controlled by generative processes which
display changes over time. On many occasions, two or more ge-
nerative processes may switch forcing the abrupt replacement of a
fitted time series model by another one. We claim that the incor-
poration of past data can be useful in the presence of concept shift.
We believe that history tends to repeat itself and from time to time,
it is desirable to discard recent data reusing old past data to per-
form model fitting and forecasting. We address this challenge by
introducing an ensemble method that deals with long-memory time
series. Our method starts by segmenting historical time series data
to identify data segments which present model consistency. Then,
we project the time series by using data segments which are close
to current data. By using a dynamic time warping alignment func-
tion, we try to anticipate concept shifts, looking for similarities be-
tween current data and the prequel of a past shift. We evaluate our
proposal on non-stationary and non-linear time series. To achieve
this we perform forecasting accuracy testing against well known
state-of-the-art methods such as neural networks and threshold auto
regressive models. Our results show that the proposed method an-
ticipates many concept shifts.

Categories and Subject Descriptors: H.2.8 [Information Systems]:
Database Application -Data Mining

General Terms: Algorithms, Theory, Measurement.

Keywords: Long-term forecasting, streaming.
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1. INTRODUCTION
Learning is the ability to modify current behavior by using in-

formation about the past. Time series models allow for an artificial
system to analyze new sequential data to automatically project it
into the future. This can help people make decisions for possible
future scenarios.

Time series models are inductive, therefore they require that de-
tected data structures are consistent with current data and also with
future unseen data records. Thus, a main challenge for learning is
the generalization ability of the proposed model.

Usually, time series are controlled by dynamic generative pro-
cesses. Indeed, in many situations, time series are governed by two
or more overlapping switching generative processes. In these sce-
narios, in order to fit new incoming data, an abrupt replacement of
one model by a new model is needed. Progressive data changes
(or concept drifts) may be incrementally incorporated into time se-
ries models in a natural fashion. In fact, time series models can
be recomputed using sliding windows, replacing old data records
with new ones. However, regular data changes can lead to stabil-
ity problems. On the other hand, abrupt data changes (or concept
shifts) may require the discarding of recent data, forcing to fit a new
model. In general, we refer this problem as the stability-plasticity
dilemma [13], which is the ability to learn new information without
discarding previously acquired knowledge.

Time series models can cope with several data aspects. For sta-
tionary data, ARMA models [4] are able to perform accurate fore-
casts. Sometimes, non-stationary data displays stationarity when
the original time series is differenced. For this kind of data ARIMA
models are appropriate [4]. However, previous models are limited
in their effectiveness if the data shows non-linearity. A number
of strategies address this problem by using neural networks [21],
which are able to accurately fit non-linear data. Finally, sometimes
data can be fitted by modeling two or more data regimes which
switch from one to another according to a set of estimated data
thresholds. These models are known as threshold auto regressive
models [14]. In any case, the stability-plasticity dilemma is tar-
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geted using an incremental learning strategy that aim to learn from
the data sequence by taking snapshots of the evolving data. This
approach is focused on learning the latest snapshots and consid-
ers that a single evolving model can explain the data generation
process. The learning goal of this method is to keep an updated
version of the model.

In the machine learning domain, the stability-plasticity dilemma
is addressed by using ensemble-based methods [17]. These meth-
ods work on labeled data and attempt to identify past data folds
which are consistent with current data. In this direction, splitting
historical data into windows of fixed length is a common practice.
Then, a weak learner is created from each data chunk. Here the
model selected for the sequel is the one that has the lowest error for
the current data. We follow this idea to design our proposal.

In time series modeling ensemble-based approaches have to deal
with an important challenge: a uniform data segmentation strategy
can be orthogonal to how multiple generative processes interact to
produce the observed data. Thus, the direct application of ensemble
techniques to time series can be unsuccessful. In order to deal with
this problem, we propose the construction of time series ensembles
by segmenting past data into segments which offer model consis-
tency, i.e. segments that allow the detection of a time series model
with good fitting properties. We explore the use of a top-down
strategy for the time series segmentation step, creating a time se-
ries tree representation. Then, a set of data segments are recovered
from the time series tree by following a bottom-up merge proce-
dure. Finally, we conduct model fitting on current data and its clos-
est past data segments. The distance between time series segments
is implemented by a dynamic time warping distance function that
detects the best alignment between segment-pairs. At this point we
study two segment matching strategies: a)Closest segment, which
merges current data with the closest past data segment, and b)One
segment ahead, which selects the following model consistent data
segment, trying to anticipate the change in the underlying data pro-
cess.

The remainder of the paper is organized as follows. In Section 2
we summarize related work. In Section 3 we introduce our method.
Experimental results are shown in Section 4. Finally we conclude
in Section 5.

2. RELATED WORK
The idea of considering multiple generative processes in time se-

ries has been studied before for classification tasks [10]. To achieve
an autonomous system able to distinguish between sober vs. drunk
drivers, a memory based times series procedure was developed.
The authors considered that time series are generated from different
underlying mechanisms. Therefore, classification algorithms were
used to recognize the class of the target time series. The recognition
procedure consists of collecting time series samples from the differ-
ent classes and fitting theα andβ parameters of the corresponding
ARMA model. The ARMA coefficients are used to build a knowl-
edge representation able to recognize the class of unlabeled time
series. To classify unseen time series, their ARMA coefficients are
estimated and compared to past series using a distance measure. Fi-
nally, time series are classified according to the class of the nearest
member of the knowledge memory.

The combination of different forecasting models was reviewed in
[9]. According to this work, the combination of multiple individual
prediction models leads to increased forecasts accuracy. Basically,
when different forecasts are combined, the risk of forecast errors is
diversified.

Ensemble models for forecasting purposes were proposed, among
others, in [16, 24, 8]. In [16], Kim et al. proposed a genetic fuzzy

predictor ensemble for predicting non-stationary time series. The
method extracts several fuzzy IF-THEN rules from input-out pairs
of the time series together with memberships functions aimed at
reducing the prediction error. Rule bases are evolved using genetic
algorithms and afterwards the membership functions are evolved
in the same manner. In order to enhance the predictability of each
rule, an ensemble of rules that combines genetically the resulting
fuzzy predictors is created by an equal prediction-error weight-
ing method. Experimental results showed that the predictability of
the ensemble of rules outperforms the predictability of one single
fuzzy predictor. In [24] the Aggregated Forecast Through Expo-
nential Re-weighting algorithm (AFTER) was proposed. The au-
thors argue that the uncertainty in finding an accurate forecasting
model can be reduced by combining different models. In the al-
gorithm, different ARIMA models were combined using a weight-
ing scheme. The weights were sequentially updated according to
the past performances of their respective models. Empirical results
showed that the AFTER algorithm reduces the error when there is
difficulty in identifying the best model. A nonlinear neural net-
work ensemble model was proposed in [18] for financial time se-
ries forecasting. Different neural networks models were generated
and selected using principal component analysis. The ensemble is
then constructed using a support vector machine regression. In [3]
a number of recurrent neural networks were trained on different
data examples and combined using a boosting based algorithm. In
[8] a two level ensemble learning approach for time series predic-
tion was developed using radial basis function networks, k-nearest
neighbor and self organizing maps. The ensemble model is able
to detect regularities in non-stationary time series and achieves a
better performance than the individual models.

Besides the ensemble approach discussed below, the combina-
tion of models can also be formed over a set of training sets. Due
to the fact than in forecasting problems the training procedure is
applied over one single training set, the dataset can be replicated
using bootstrap. The bootstrap aggregating or bagging approach
refers to the idea of combining different forecasts trained over the
bootstrap-replicated training set [6]. Kilian and Inoue addressed the
problem of having a number of relevant predictors that individually
have weak explanatory power [15]. They used a bagging approach
to perform forecasts from multiple regression models. The main
argument of the authors is that bagging is a suitable approach for
situations in which predictors are moderately large relative to the
sample size. In [19] the bagging approach was extended to time se-
ries using asymmetric cost functions for predicting signs and quan-
tiles. Unlike financial returns which may not be predicted, their
variance, sign, and quantiles may be predictable. Results obtained
showed that bagging may improve the binary prediction in small
samples.

3. TIME SERIES ENSEMBLE METHOD
In this section we introduce our forecasting framework, which

is divided into three parts: 1) A top-down segmentation strategy
which identifies past data segments with good model consistency
properties, 2) A bottom-up merge segment strategy which address
the parsimony/representativeness tradeoff, and 3) An alignment strat-
egy that looks for the closest past segments.

3.1 The Top-down segmentation strategy

Our method, which has the goal of identifying meaningful past
data sequences for forecasting purposes, starts by creating a tree
representation of the historical time series sequences. To do this
we follow a top-down segmentation strategy which looks for the
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best partition of the sequence according to a given model selection
criteria. The partition algorithm evaluates each sequence split by
measuring the likelihood of the model fitting procedure to both seg-
ments. The best split is the one which maximize the log likelihood
of the fitted models. Then, the two time series sub sequences gen-
erated by the partition algorithm are segmented by recursive calls
to the top-down algorithm. The following procedures implement
our strategy.

TOP− DOWN(S, i, j,L)

1: if j > i then
2: p← PARTITION(S[i, j])
3: pivot← i+ p− 1

4: if length(S[i, pivot]) ≥ L then
5: TOP− DOWN(S[i, pivot], i, pivot,L)
6: end if
7: if length(S[pivot + 1, j]) ≥ L then
8: TOP− DOWN(S[pivot+ 1, j], pivot+ 1, j,L)
9: end if

10: end if

PARTITION(S)

1: ML← −106

2: for i = 2 to length(S)− 1 do
3: model1← ModelFitting(S[1, i])
4: model2← ModelFitting(S[i+ 1, length(S)])
5: L1 ← length(S[1, i])
6: L2 ← length(S[i+ 1, length(S)])
7: w1 ←

L1
L1+L2

8: w2 ←
L2

L1+L2

9: Lik← w1 · model1.Lik + w2 · model2.Lik
10: if Lik > ML then
11: pivot← i

12: ML← Lik

13: end if
14: end for
15: return pivot

To segment the entire time seriesS theinitial call is as follows:
TOP− DOWN(S, 1, length(S),L). We introduce a minimum length
parameterL to avoid the split of extremely short time series seg-
ments.

The key to the algorithm is thePARTITION procedure, which
splits each segment according to a model consistency criteria. We
use the maximum likelihood identification strategy proposed by
Akaike [1] as a model consistency criteria. The maximum likeli-
hood estimation is a well known time series model detection method
used to select ARIMA models, which allows the identification of
data segments which display good model fitting properties.

A family of ARIMA models may be evaluated for each segment
by using step-wise algorithms, a strategy which helps in the search
of model coefficients which was proposed by Hyndman and Khan-
dakar [20]. Then,PARTITION evaluates the quality of each split
S[1, i] andS[i+ 1, length(S)] for each value of the indexi in
{2, length(S) − 1}. After that, the best ARIMA model is fitted
to each time series segment and the likelihood of each model is re-
trieved. A global likelihood measureLik for the split is calculated
by weighting each model likelihood by the time series segment
length, penalizing by the length the model fitting of extremely short
segments. Finally, the position of the data point around which the
maximum global likelihood is reached is returned to theTOP− DOWN

algorithm, which recursively split the segments around this ele-

ment. We call this element thepivot of the sequence.TOP− DOWN

loops while the end and start sequence index elementsi andj sat-
isfy the conditionj > i.

We use a concrete example to explain how our segmentation
strategy works. A tree structure produced by our strategy on a real-
world time series is shown in Figure 1. The lower figure shows the
political perception about a given 2008 U.S. presidential election
candidate. Each time series point represents daily polarity percep-
tions. A total of 120 points are represented in the time series which
corresponds to the first four months of the campaign. The upper
figure shows the tree produced by our top-down segmentation pro-
cedure, where the vertical axis represents the likelihood of each
time series split.

Figure 1: Tree structure produced by our top-down segmenta-
tion strategy over a 2008 U.S. presidential election opinion time
series.

The tree produced by our procedure provides a way to visualize
how different subsequent time series segments are. The closer the
split is to the tree leaves, the more consistent the segments are for
a model fitting procedure. For example, the segments between data
points 35-41 and 41-49 are very close each other, suggesting that a
unique model can be fitted in the interval 35-49. On the other hand,
the segments between 98-109 and 109-120 were splitted almost at
the top of the tree, indicating that two models are possibly needed
to get a better description of the 98-120 segment.

We use a data model consistency criteria which is based on a col-
lection of ARIMA modeling properties. However, a common limi-
tation of using ARIMA modeling is that model selection can imply
a significant number of potential candidate models. In this scenario,
an exhaustive evaluation of every candidate model is unpractical.
The state-of-the-art registers several efforts towards addressing the
ARIMA model selection task. These methods attempt to automate
model selection procedures. We consider a generalARIMA(p, d, q)
model for stationary series of thed-th order difference, given by
the following expression:

Y
d
t = φ1Y

d
t−1 + ...+ φpY

d
t−p + et − θ1et−1 − ...− θqet−q,

where the variables{et} are a sequence of unobserved and inde-
pendent zero mean white noise random variables andYt is the tar-
get variable. In the case of seasonal data, a generalized seasonal
ARIMA model ARIMA(p, d, q)× (P, D, Q)m may be selected, where
m is the seasonal frequency. The model selection task corresponds
to the estimation of the valuesp, q, P, Q, d, D, andm. We do this by
following the method proposed by Hyndman and Khandakar [20],
which is based on the diffuse prior approach introduced by Durbin
and Koopman [12]. The diffuse prior approach starts by choos-
ing proper difference valuesd andD, allowing a posterior proper
likelihood comparison between models of the same order. To se-
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lect the difference orders of the model, the model selection method
conducts a set of unit-root tests [11] for a null hypothesis of no
unit-root. A set of successive unit-root tests are conducted for an
increasing sequence ofd values until a first insignificant result is
achieved. For seasonal data, a Canova-Hansen test [7] is conducted
to find a proper value for the seasonal frequency. Then, ifm > 1

(i.e. the displays a relevant seasonal component), the difference or-
der of the seasonal component is also determined by following a set
of unit-root tests. Finally, an exhaustive grid search is conducted to
select the values ofp, q and possiblyP andQ, if D 6= 0, by min-
imizing the Akaike information criteria [1] (AIC), defined by the
following expression:

AIC = −2 lg(L) + 2 (p+ q+ P+ Q+ k) , (1)

wherek = 1 if d or D are non zero values, andL is the maximum
likelihood of the fitted model. Notice that the first part of theAIC
criteria represents the maximum likelihood model selection crite-
ria, and the second part is a penalizing factor which helps select
parsimonious models, i.e. to avoid to choose over parameterized
models.

Globally, our partition procedure selects the data point around
which the likelihood of both data segments is maximized. Never-
theless, our strategy attempts to also address the tradeoff of splitting
extremely short data sequences, where very simple models may be
fitted, decreasing the second factor of Eq. (1). To achieve a good
balance between data representativeness and model parsimony, we
calculate a global fitness function which is a weighted convex com-
bination of the likelihood of both segments and their lengths, de-
scribed as follows:

Lik = w1 · L(M1) + w2 · L(M2), (2)

wherew1 andw2 are given by L1

L1+L2
and L2

L1+L2
, respectively. No-

tice thatM1 andM2 are the models which optimize theAIC crite-
ria for a given pair of segmentsS1 andS2, where the length of
each segments isL1 andL2, respectively. Thus, our split criteria
fits the Akaike optimum model for each segment (local optimiza-
tion of likelihood and parsimony) but the split is oriented by the
maximum likelihood criteria, which is weighted by each segment
length. Thus, Eq. (2) can be expressed as a minimum-maximum
split criterion function, given by the following expression:

Max
t

{

w1 · L
(

Min
i

AIC(Mi |= S1,...,t)
)

+ w2 · L
(

Min
j

AIC(Mj |= St+1,...,N)
)

}

. (3)

3.2 The Bottom-up merge strategy

Despite the fact that the criterion function we have just described
is designed to achieve a good balance between data representative-
ness (i.e. segment length) and model fitting (i.e. likelihood and par-
simony), we cannot ensure that the tree structure produced by our
top-down strategy may lead to extremely simple short segments. To
some extent this situation is controlled by the split criterion func-
tion, which in practice, tends to avoid over segmentation by the
inclusion of the segment length in the split criterion function de-
fined in Eq. 3. We also use a parameter which defines a minimum
segment length (denoted byL) to be considered by the partition
procedure (see lines 4 and 7 in theTOP− DOWN procedure). But our
procedure cannot avoid the partition of a given segment of lengthL

into two very dissimilar parts. Indeed, the use of the Akaike crite-
rion function may lead to very simplistic models because it includes
a parsimony component.

We address this situation by defining an automatic bottom-up
strategy which verifies the results produced by the top-down seg-
mentation procedure, correcting and avoiding anomalous splits. We
fix the case where a naive model with one coefficient was selected
(i.e. the model considers only the bias component) by merging this
segment with its closest segment, fitting a new model to the com-
position of both segments. If the new model has at least two coef-
ficients (i.e. is at least an AR(1) or MA(1)) the merge procedure
stops, otherwise the merge procedure is repeated. We illustrate our
bottom-up merge strategy in Figure 2.

160       175          187          198        208          223 
    B         AR(1)     MA(1)         B          AR(2) 

MA(2)                                     B

ARMA(1,1)

Figure 2: The bottom-up merge strategy.

Thesegments 160-175 and 198-208 are fitted by a couple of bi-
ased one component models (denoted byB). Then, the bottom-
up strategy merges the segment 160-175 with 175-198 (note that
this segment is as well composed of a couple of segments fitted
with models of two coefficients) producing aMA(2) model. As this
new model has three coefficients (the bias coefficient and the two
coefficients defined by the second order moving average model)
the procedure stops. To fix the 198-208 case, the bottom-up strat-
egy merges this segment with the one included between the val-
ues 208-223. However, the new model generated is also a biased
one, forcing the merge of the segment 198-223 with the one in-
cluded between the values 160-198. As the new model fitted is an
ARMA(1, 1), the procedure stops.

The bottom-up strategy ensures that every time series segment
will be explained by a model, discarding over segmented data. In
the previous example, the bottom-up strategy withdraw the initial
five segments by replacing them with only one model.

3.3 Forecasting: Looking for similar data se-
quences in the past

We index each time series segment identified by our top-down
/ bottom-up segmentation strategy in an ensemble. Based on the
available history of the time series up to a given time pointt0, we
would like to forecast the value ofYt0+h

, whereh is the number
of steps ahead, also known as hops. In practice, we are interested
in the projection ofm hops ahead, wherem is a seasonal regular
frequency of interest.

We consider two baseline forecasting cases, which explore fore-
casting accuracy under two dissimilar scenarios: A short-memory
scenario, where the historical data is discarded for forecasting pur-
poses, and a long-memory scenario, where all the available data is
considered for forecasting.
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Short-memory forecasting.
The data that needs to be projected is composed of the lastm

observed data points. A short memory strategy will forecast the
series by using only the current data, fitting a model on the lastm

data points and projecting themm steps ahead, discarding past data
for forecasting purposes.

Long-memory forecasting.
We consider the complete set of past data as the current data to

be forecasted. Then, we fit a model over the entire observed time
series, projecting itm steps ahead.

We explore the feasibility of two new strategies, firstclosest seg-
ment, which adds to current data the closest historical data segment.
Second, we consider the strategyone-segment ahead, which adds
current data to the segment whose previous segment is closest to
the current data.

Closest segment forecasting.
The data to be projected is the current data and the historical

segment which is closest to the last pastm observed data points.
The composition of both segments is forecastedm steps ahead.

One-segment ahead forecasting.
The data to be projected is the current data and the historical

segment whose previous segment is closest to the lastm observed
data points. The composition of both segments is forecastedm

steps ahead.

We describe each forecasting strategy in Figure 3.

t
0

m last points m steps ahead

One segment ahead

Closest segment

Long memory

Short memory

closest segment

Figure 3: The forecasting strategies.

Closest segmentandone segment aheadrequire a distance func-
tion evaluation between the current data and each indexed historical
segment. We use a flexible way to determine a distance measure be-
tween two sequences. As both sequences may be out-of-phase, we
use an alignment procedure to find the optimal alignment between
both sequences according to a given distance function. This pro-
cedure known asDynamic Time Warping (DTW)was first used to
match out-of-phase audio signals. Despite the fact that theDTW
performance may be deteriorated by outliers, we use it due to its
alignment flexibility. As a distance function we consider the Eu-
clidean distance.

Closest segmentlooks for the most similar historical sequence to
expanding the current data for which the model will be fitted and
forecasted. The rationale is that the current data generative process
can be better described if we add current data with similar past data.
As data generative processes may change frequently, creating time
series segments of short time span, data in a single segment repre-

sents a single occurrence of an underlying data generative process.
Thus, merging current data and its closest segment can help the
reconstruction of a better model.

Closest segmentworks well only if the underlying data genera-
tive process does not change in the nextm steps. One way to anti-
cipate a change is to aggregate current data with the historical data
segment which is contiguous to the closest segment. Since our time
series segmentation is oriented towards model consistency, the his-
torical segment ahead can be an occurrence of a different data gene-
rative process. Thus, merging current data with the segment ahead
of the closest segment can facilitate the detection of a change point.

4. EXPERIMENTAL RESULTS
We conduct experiments on different types of time series to test

the abilities of the proposed forecasting strategies under different
scenarios. The forecasting performance of the proposed strategies
is studied using both synthetic and real data time series.

4.1 Time series
We use the following time series in our experiments:

Synthetic control chart time series.
This dataset contains a number of time series synthetically gener-

ated by changing data processes described by Alcock and Manopou-
los [2]. These series corresponds to different classes of control
charts. We recover the series classified in the upward shift and
downward shift classes. Each series has 60 samples1. We use the
series numbered as 401 and 501, that will be denoted in this section
asUpward andDownward.

Prey-predator time series.
These experimental time series represent the number of proto-

zoan per ml measured every twelve hours over a period of 35 days.
The series were registered in the experiments of Veilleux [22] about
the population fluctuation of a prey-predator system, whereas the
prey isParamecium aureliaand whereas the predator species isDi-
dinium natsutum2. The initial part of the data is non-stationary. We
use both series of 70 samples for each one, denoted in this section
asParamecium andDidinium.

River flow.
This series shows the monthly river flow for the Iowa River mea-

sured at Wapello, Iowa, for the period September 1958 through
August 2006. It has 576 data samples. The flow was measured
in cubic feet per second. Some parts of the data show non-linearity.
In terms of history, this is the longest time series considered in our
experiments3. We use the complete series, denoted in this section
asflow.

US elections 2008.
These series show daily perceptions of candidates of the 2008

US presidential election, Barack Obama and John McCain. The
series were generated by processing public Twitter messages and
by inferring opinion polarity of users regarding each entity accord-
ing to a sentiment analysis method based on a lexicon [23]. These
series were introduced in [5] and show the polarity measured in the
United States during the period of June 2008 through November
2008. We denote each series asObama andMcCain.

1See: http://archive.ics.uci.edu/ml/databases/
2See:http://www.buseco.monash.edu.au/~hyndman
3See:http://waterdata.usgs.gov/ia/nwis/sw
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4.2 Methods

We study the use of different models for the forecasting step. As
a base model we consider the ones achieved by the ARIMA model
selection procedure proposed by Hyndman and Khandakar [20]. In
addition, we investigate the use of neural networks for forecasting
[21], which have shown advantages to fit non linear data. Finally,
we also investigate the use of threshold autoregressive models [14]
for forecasting purposes, which have shown good properties for
switching data processes.

Neural Networks.
We explore the performance of the "Neural network nonlinear

autoregressive model" for forecasting, which was proposed by Tong
[21]. This model considers a single hidden layer, possibly with
skip-layer connections and a linear output. The model is estimated
using a BFGS optimization method. We denote this method in the
results section asNNET.

Self exciting threshold autoregressive model.
We explore the performance of the "Self exciting threshold au-

toregressive model (SETAR)", which was proposed by Geweke and
Terui [14]. This model allow more flexibility by considering a
regime switching behavior, where the switch from one regime to
another is triggered by a threshold which is conditioned to past val-
ues. We consider two regimes and a threshold which is searched
over a grid of feasible values. The AR order of the lower and upper
regimes is equal to 1, considering a delay parameter equals 3.

We use the neural networks implementation provided in the NNET
R package, version 7.3-14. The SETAR method is included in the
TSDYN R package, version 0.8.15. Finally, the ARIMA model
selection procedure is provided in the FORECAST R Package, ver-
sion 3.216.

4.3 Results on synthetic data

In a first experiment we explore and test the forecasting capa-
bilities of the proposed methods with theUpward andDownward
synthetic time series introduced in subsection 4.1. We denote the
methods byLM (long memory),SM (short memory),CS (closest seg-
ment), andAHEAD (one segment ahead).

We start the evaluation with theUpward andDownward series.
We do this by considering the first 40 points as the historical data,
and the subsequent 20 data points as the future unseen points. We
consider forecast windows of 5 steps ahead, that is to say,t0 = 40,
and four forecasts windowsS[41 : 45], S[46 : 50], S[45 : 55], and
S[56 : 60]. For example, the forecasts for the windowS[41 : 45]
consider that the current data is the sequenceS[36 : 40], for the
window S[46 : 50] the current data isS[41 : 45] and so on. The
initial segmentation over the sequenceS[0 : 40] is considered for
every forecasted window. Finally, we compare the real dataS[41 :
60] with the forecasted data obtained by using each of the discussed
methods. Tables 1 and 2 show the accuracy results for theUpward

andDownward series, respectively.
Table 1 shows that the short memory method is very compet-

itive with the one segment ahead strategy. We can observe that
the neural networks and the setar methods based on the one seg-
ment ahead are better than the long memory and the short memory,
and in particular, these outcomes significantly outperform the re-

4See: http://www.stats.ox.ac.uk/pub/MASS4
5See:http://tsdyn.googlecode.com
6See:http://robjhyndman.com/software/forecast

Table 1: Accuracy results for the Upward time series
ME RMSE MAE MPE MAPE

LM + ARIMA -1.33 5.43 4.79 -4 12
LM + NNET 3.91 5.21 4.11 9 9
LM + SETAR 0.18 5.67 4.74 0 12
SM + ARIMA -0.19 4.17 3.61 -1 9
SM + NNET -0.73 6.19 5.31 -3 13
SM + SETAR 6.44 7.09 6.44 15 15
CS + ARIMA -0.83 5.59 4.84 -3 12
CS + NNET 7.74 8.73 7.74 18 18
CS + SETAR 8.01 8.54 8.01 19 19
AHEAD + ARIMA -0.61 4.18 3.51 -2 9
AHEAD + NNET -0.72 4.10 3.52 -2 9
AHEAD + SETAR -2.38 4.81 4.26 -7 11

Table 2: Accuracy results for the Downward time series
ME RMSE MAE MPE MAPE

LM + ARIMA -1.1 3.57 3.14 -14 26
LM + NNET -8.36 10.21 9.01 -68 72
LM + SETAR -0.93 3.71 3.51 -17 33
SM + ARIMA -0.36 4.21 3.76 -10 30
SM + NNET -1.26 3.41 2.81 -14 23
SM + SETAR -2.04 3.9 3.48 -22 30
CS + ARIMA -0.45 3.79 3.42 -11 28
CS + NNET -0.73 3.41 2.68 -12 22
CS + SETAR 0.66 3.93 3.43 -2 25
AHEAD + ARIMA -1.17 3.07 3.02 -12 25
AHEAD + NNET -1.57 3.7 3.2 -18 27
AHEAD + SETAR 3.63 5.24 4.23 19 24

sults achieved by the closest segment strategy. These results illus-
trate the fact thatUpward is a short memory time series but shows
changes that are properly detected by the one segment ahead strat-
egy. Something similar occurs with theDownward time series. As
Table 2 shows, the best results are achieved by the closest segment
and one ahead segment strategies, with a couple of very interest-
ing results achieved by neural networks and setar, showing that
Downward presents non linearities.

4.4 Results on real world data
We start the analysis by evaluating the performance of the meth-

ods in theParamecium andDidinium series. We fixt0 at 50, re-
serving the last 20 samples for forecasting purposes. We consider
forecasted windows of 5 samples, that is to say, we fix the num-
ber of hopsm = 5. As these series have 70 samples, we obtain
4 forecasted windows in the interval between 51-70. We show the
accuracy results for these series in Tables 3 and 4.

Table 3 shows that the best results are achieved by the long mem-
ory strategy with a setar based forecasting model. These results are
very close to the ones achieved by the one segment ahead, show-
ing in this case that the use of ARIMA models may be improved
by replacing the long memory with the one segment ahead strat-
egy. In the case ofDidinium, in Table 4, we note that the results
achieved by the long memory setar and the one segment ahead
ARIMA strategies are very close. These results illustrate that as
both series have a short history, the impact of the use of past data is
limited. However, one segment ahead shows again, good results.

We evaluate the accuracy performance offlow by fixing t0 =
504. Then, the remainder 72 data samples were reserved for fore-
casting purposes, considering projections of 12 hops ahead due the
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Table 3: Accuracy results for the Paramecium time series
ME RMSE MAE MPE MAPE

LM + ARIMA 21.01 35.82 29.81 19 46
LM + NNET 8.98 26.79 21.36 -3 37
LM + SETAR 11.95 20.96 15.21 10 21
SM + ARIMA 16.47 50.84 45.52 -18 83
SM + NNET 6.48 49.59 47.02 -32 96
SM + SETAR 5.97 34.69 26.75 -12 49
CS + ARIMA 26.17 40.05 34.98 24 51
CS + NNET 13.21 37.64 32.66 -3 60
CS + SETAR 3.11 24.44 18.01 -1 27
AHEAD + ARIMA 10.48 19.78 15.79 6 25
AHEAD + NNET 15.49 33.63 28.14 6 51
AHEAD + SETAR -4.06 37.32 24.16 -10 37

Table 4: Accuracy results for the Didinium time series
ME RMSE MAE MPE MAPE

LM + ARIMA -2.14 72.71 45.21 -32 47
LM + NNET 2.61 90.38 71.05 -58 87
LM + SETAR 5.31 65.61 40.08 -18 35
SM + ARIMA -63.91 182.53 143.9 -155 203
SM + NNET -4.19 121.61 84.67 -72 112
SM + SETAR -5.38 109.35 77.21 -46 84
CS + ARIMA -45.69 148.78 101.8 -130 152
CS + NNET 13.58 98.97 74.36 -49 86
CS + SETAR -62.61 171.15 111.7 -156 176
AHEAD + ARIMA 5.59 68.91 38.81 -16 35
AHEAD + NNET -7.08 90.30 73.83 -66 93
AHEAD + SETAR -20.19 94.79 69.78 -62 81

fact that the data presents an annual seasonal frequency. As this
series has 576 samples, we obtain six forecasted windows, in the
interval between 505 through 576. We show the results in Table 5.

Table 5: Accuracy results for the flow time series
ME RMSE MAE MPE MAPE

LM + ARIMA -1817 6489 5302 -102 120
LM + NNET -1441 6784 5421 -103 125
LM + SETAR -1661 7437 6097 -123 144
SM + ARIMA -1604 6498 5262 -101 122
SM + NNET -2443 7326 6134 -139 154
SM + SETAR -2006 8018 6748 -131 151
CS + ARIMA 2120 6987 4833 -20 74
CS + NNET -742 6480 5062 -83 106
CS + SETAR -1536 6670 5336 -101 119
AHEAD + ARIMA -914 6232 4879 -84 105
AHEAD + NNET -2005 7275 5995 -126 144
AHEAD + SETAR -1255 7118 5706 -106 127

As Table 5 shows, the best results are achieved by the closest
segment strategy combined with the ARIMA model. In fact, the
model selection procedure detects seasonality, which explains why
in this case the use of a seasonal ARIMA offers good performance
results. We can observe that by replacing the long memory with the
closest segment strategy, the ARIMA accuracy achieves significant
improvements (around 40 MAPE points and 80 MPE points) which
in fact is a very remarkable result. This fact indicates to us that
flow is a long memory series, but the discarding of some past data

periods favors the identification of better models for forecasting
purposes.

Finally, for theObama andMcCain series we fixedt0 = 120.
that is to say, we consider the first four months as the historical
data, projecting the series until the 156-th day. We consider as a
frequency of interest 7 hops. As the series have 156 samples, we
obtain 5 forecasted windows in the interval between 121 through
156. Accuracy results are shown in Tables 6 and 7.

Table 6: Accuracy results for the Obama time series
ME RMSE MAE MPE MAPE

LM + ARIMA 0.005 0.069 0.051 -4 18
LM + NNET 0.008 0.078 0.061 -4 20
LM + SETAR -0.009 0.077 0.054 -9 20
SM + ARIMA 0.013 0.068 0.048 -5 17
SM + NNET -0.011 0.071 0.051 -7 19
SM + SETAR -0.016 0.081 0.058 -12 22
CS + ARIMA -0.012 0.072 0.048 -10 18
CS + NNET 0.007 0.071 0.051 -4 18
CS + SETAR 0.002 0.072 0.055 -5 19
AHEAD + ARIMA -0.015 0.051 0.039 -5 12
AHEAD + NNET -0.014 0.052 0.041 -5 12
AHEAD + SETAR -0.011 0.059 0.045 -4 12

Table 7: Accuracy results for the McCain time series
ME RMSE MAE MPE MAPE

LM + ARIMA -0.044 0.127 0.101 188 304
LM + NNET 0.009 0.227 0.142 196 299
LM + SETAR -0.025 0.126 0.095 190 279
SM + ARIMA -0.017 0.129 0.121 216 299
SM + NNET -0.009 0.114 0.083 190 252
SM + SETAR -0.006 0.233 0.142 216 232
CS + ARIMA 0.012 0.125 0.098 188 233
CS + NNET -0.055 0.181 0.136 231 337
CS + SETAR -0.033 0.231 0.141 160 222
AHEAD + ARIMA -0.008 0.097 0.046 122 142
AHEAD + NNET -0.009 0.091 0.115 130 153
AHEAD + SETAR 0.024 0.253 0.122 177 216

Table 6 shows that the results achieved for theObama series are
very precise for every method evaluated. In this case the best results
are achieved by the one segment ahead strategy, but these results in
fact are very close to the ones achieved by the other methods, illus-
trating that this series shows low variability. On the other hand, the
McCain series shows a very significant noise level, which explain
that the quality of the results is more limited. The results show that
the use of a one ahead segment strategy also offer good results, il-
lustrating that a short memory strategy may discard relevant past
data and a long memory strategy may include irrelevant past data
achieving the one segment ahead strategy a good balance between
both scenarios.

5. CONCLUSION
We propose two new forecasting strategies which consider past

data to conduct a model selection procedure. We evaluate the pro-
posed strategies against two baselines, a long memory strategy which
considers the whole history for model selection, and a short mem-
ory strategy, which discards past data. We evaluated our methods
by combining them with three different models: ARIMA, neural
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networks and SETAR. We evaluate our methods considering non
linear/linear data, non stationary/stationary data, short/long time
data, and seasonal/non seasonal data. In every case, the use of
selective memory offers benefits against a short or long memory
strategy. In particular our results show that the use of the one seg-
ment ahead strategy outperforms many of the evaluated methods,
showing its abilities for change detection and forecasting.

Currently, we are extending our proposal to properly work with
high frequency data, allowing to us the evaluation of the proposed
methods in financial time series. Preliminar results show that this
framework may offers improvements for forecasting purposes.
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