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Abstract
Due to the success of pre-trained language models, versions of languages other than English have been released in recent
years. This fact implies the need for resources to evaluate these models. In the case of Spanish, there are few ways to
systematically assess the models’ quality. In this paper, we narrow the gap by building two evaluation benchmarks. Inspired by
previous work (Conneau and Kiela, 2018 |Chen et al., 2019)), we introduce Spanish SentEval and Spanish DiscoEval, aiming
to assess the capabilities of stand-alone and discourse-aware sentence representations, respectively. Our benchmarks include
considerable pre-existing and newly constructed datasets that address different tasks from various domains. In addition,
we evaluate and analyze the most recent pre-trained Spanish language models to exhibit their capabilities and limitations.
As an example, we discover that for the case of discourse evaluation tasks, mBERT, a language model trained on multiple
languages, usually provides a richer latent representation than models trained only with documents in Spanish. We hope
our contribution will motivate a fairer, more comparable, and less cumbersome way to evaluate future Spanish language models.
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1. Introduction

Spanish is one of the most widely spoken languages.
This fact has drawn the attention of the NLP com-
munity to the development of resources for that lan-
guage. As a result, some pre-trained Spanish lan-
guage models (Etcheverry and Wonsever, 2016; (Che
et al., 2018}, |Canete et al., 2020; |Gutiérrez-Fandino et
al., 2021) have been released in recent years driven
by self-supervised approaches. This proliferation of
Spanish language models increases the need for anno-
tated datasets to evaluate them. Consequently, Span-
ish datasets for a wide variety of independent tasks
have been proposed (A. Garcia Cumbreras et al., 2006;
Cruz Mata et al., 2008; |Artetxe et al., 2020; [Huertas-
Tato et al., 2022). However, little effort has been put
into creating benchmarks that allow models to be eval-
uated systematically and fairly.

Recently, |Canete et al. (2020) presented the GLUES
benchmark, a compilation of natural language under-
standing tasks in Spanish. This benchmark aims to
evaluate the performance of models by fine-tuning
them to a target task (Wang et al., 2018). In contrast,
another methodology known as probing tasks aims
to assess whether the resulting representations of the
models are general-purpose (Conneau et al., 2018a).
A probing task is designed in such a way as to isolate
some linguistic phenomena, and a classifier is used on
top of the representations to verify if the model has en-

coded the linguistic phenomena in question. This type
of representation evaluation for Spanish language mod-
els is generally carried out using a cross-lingual setting
(Ravishankar et al., 2019} |Sahin et al., 2020). How-
ever, these benchmarks only focus on assessing word
representations or basic linguistic knowledge.

On the one hand, the Spanish SentEval, inspired by
SentEval (Conneau and Kiela, 2018)), aims to evaluate
representations of independent sentences. Unlike pre-
vious work focused on probing tasks for basic linguis-
tic properties (Ravishankar et al., 2019} [Sahin et al.,
2020), our benchmark comprises four sets of sentence
classification tasks with realistic texts from different
domains. On the other hand, the Spanish DiscoEval,
inspired by DiscoEval (Chen et al., 2019), focuses on
the evaluation of discourse knowledge in sentence rep-
resentations. Evaluating discourse involves analyzing
a sentence in the context in which it is located. For this
reason, we include five sets of tasks based on sentence
ordering, discourse relations, and discourse coherence.

The overall objective of both benchmarks is to avoid
unnecessary re-implementations and the use of mul-
tiple evaluation schemes, thus allowing a compara-
ble and fair assessment between models. Further-
more, we compare publicly available Spanish sen-
tence encoders on our Spanish SentEval and Span-
ish DiscoEval to demonstrate their strengths and
weaknesses. The results and subsequent analysis
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expose the Spanish language models’ current ca-
pabilities, showing that there is still room to im-
prove them in future work. Our code and datasets
are available for future experimentation and repli-
cability at https://github.com/OpenCENIA/
Spanish-Sentence-Evaluation.

2. Sentence Evaluation

SentEval was introduced by |Conneau and Kiela (2018))
as a tool for evaluating the quality of universal sentence
representations. It encompasses a standard pipeline
evaluation that uses the representations generated by
sentence encoders as features in various downstream
tasks. Specifically, SentEval includes stand-alone sen-
tence and sentence pair tasks modeled by classification
or regression. For comparison purposes, this frame-
work consists of simple predefined neural architectures
to avoid shifting the burden of modeling to their opti-
mization process.

For our Spanish SentEval, we adopt the original
pipeline and include datasets equivalent to those in En-
glish. Below we describe each task and dataset in-
cluded in our Spanish version. Additionally, basic
statistics for each dataset are shown in[Appendix A]
As proposed in |Chen et al. (2019), we use [, -, -]
to denote concatenation of vectors, © for element-wise
multiplication, and | - | for element-wise absolute value.

2.1. Sentence Classification (SC)

Sentence classification is one of the most common NLP
tasks, with applications ranging from document classi-
fication to sentiment analysis. Because of its inherent
simplicity, the task offers a straightforward way to eval-
uate sentence-level representations. For our version,
we include a set of binary and multiclass datasets that
cover various types of sentence classification tasks.
For sentiment analysis, we include MuchoChine (MC)
(Cruz Mata et al., 2008), a movie review dataset, and
TASS 2020 (Vega et al., 2020) tasks 1 and 2 consisting
of polarity and emotion classification (Plaza del Arco
et al., 2020), respectively. Figure [T]shows an example
of a MC positive sentiment sentence.

Other types of text classification datasets that we
include are the FilmAffinity corpus (FAC) (Sobre-
villa Cabezudo et al., 2015) for subjective/objective
classification and the Spanish QC dataset (SQC)
(A. Garcia Cumbreras et al., 2006) for question-type.
For all of these tasks, the input to the classifier is the
representation of the sentence.

* Una historia policiaca que Scorsese la transforma
en una memorable muestra del genero.

Figure 1: SC example. The sentence belongs to the MC
dataset and shows a positive sentiment.

2.2. Sentence Pair Classification (SPC)

In sentence pair classification, each example in a
dataset has two sentences along with the appropriate

target, and the aim is to model the textual interaction
between them. We consider entailment and paraphras-
ing tasks for our Spanish benchmark.

For the entailment task, we include two datasets. The
first is the recently released SICK-es (Huertas-Tato et
al., 2022)) for entailment (SICK-es-E), which was con-
structed by translating and manually curating the En-
glish SICK dataset into Spanish. Due to the lack of NLI
tasks in Spanish, the second dataset was constructed us-
ing XNLI (Conneau et al., 2018b) and esXNLI (Artetxe
et al., 2020). Specifically, we use the XNLI test set as
the training set, the XNLI development set as the devel-
opment set, and the esXNLI set as the test set. We will
refer to this as NLI-es (example shown in Figure 2)).
For the paraphrasing task, we use PAWS-X (Yang et al.,
2019), a cross-lingual paraphrase identification dataset
with high lexical overlap. We only use the Spanish text,
naming it PAWS-es for ease of reference.

Like English SentEval, we encode the two sentences
and use [|x1 — 22|, 21 @ x2] as input to the classifier.

Premise: Y yo estaba bien, |y eso fue todo!
Hypothesis: Después de que dije que si, termind.

Figure 2: Example of SPC from NLI-es. The two sen-
tences show an entailment.

2.3. Semantic Similarity (SS)

This task consists of scoring a pair of sentences based
on their degree of similarity, even if they are not exact
matches. There are two common approaches to eval-
uating this task and we include them in our Spanish
SentEval. The first requires training a model on top of
the sentence embeddings. For this approach, we use
the SICK-es (Huertas-Tato et al., 2022)) for relatedness
(SICK-es-R). The second assesses sentence pairs using
an unsupervised approach. For this case, we include the
Spanish track of STS tasks 2014 (Agirre et al., 2014),
2015 (Agirre et al., 2015) and 2017 (Cer et al., 2017).
All of these datasets consist of a pair of sentences la-
beled with a similarity score between 0 and 5; an exam-
ple is shown in Figure 3] The objective is to evaluate
whether the cosine similarity of two sentence represen-
tations correlates with a human-labeled similarity score
through Pearson and Spearman correlations.

* Un perro estd con un juguete.
* Un perro tiene un juguete.

Figure 3: Example of the STS task. The two sentences
are similar with a score of 4.8 out of 5.

2.4. Linguistic Probing Tasks (LPT)

Some sentence classification tasks are complex and
make it difficult to infer what kind of information is
present in the representations. This prompted the cre-
ation of X-Probe (Ravishankar et al., 2019), a multi-
lingual benchmark of nine probing tasks to evaluate
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individual linguistic properties. These tasks were de-
signed to evaluate surface information (SentLen, WC),
syntactic information (BiShift, TreeDepth), and seman-
tic information (Tense, SubjNum, ObjNum, SOMO,
CoordInv). The former evaluate superficial tasks that
could be solved simply by looking at the sentence to-
kens. The second tests whether the embeddings are
sensitive to the syntactic properties of the sentences.
The third assesses the semantic understanding of the
embedding. We include all the proposed probing tasks
in Spanish from X-Probe. We refer to the original paper
(Ravishankar et al., 2019) for further information.

The input to the classifier is the representation of the
sentence, and the output can be binary or multiclass.

* En enero participé en la infructuosa defensa de
Forli frente a César Borgia.

Figure 4: Example of LPT. The task consists of Tense
classification. In this case the sentence is in past tense.

3. Discourse Evaluation

DiscoEval originally proposed by|Chen et al. (2019)) in-
cludes tasks to evaluate discourse-related knowledge in
pretrained sentence representations. DiscoEval adopts
the SentEval pipeline with fixed standard hyperparam-
eters to avoid discrepancies. For our Spanish version of
DiscoEval, we follow closely the original construction
and evaluation methodology. Specifically, DiscoEval
includes supervised sentence and sentence group clas-
sification tasks modeled by logistic regression or clas-
sification. Our datasets were constructed from multiple
domains encompassing a wide diversity of text sources.
Below we describe the tasks and dataset constructions.

Statistics for each dataset are shown in|Appendix Al

3.1. Sentence Position (SP)

SP seeks to assess the ability of a model to order ideas
in a paragraph. This dataset is constructed by taking
five consecutive sentences from a given corpus and ran-
domly moving one of these five sentences to the first
position. The task consists of predicting the proper lo-
cation of the first sentence. We have five classes where
class 1 means that the first sentence is in the correct po-
sition. But if the class is between 2 and 5, the first sen-
tence corresponds to another position in the paragraph.
We create three Spanish versions of different domains
for this task using: the first five sentences of Wikipedia
articled'} Chilean university thesis abstract{’} and news
articles in Spanish from the MLSUM dataset (Scialom
et al., 2020).

Figure [5] shows an example of this task for the thesis
dataset. The first sentence should be in the second po-

'We use the latest Spanish Wikipedia articles dump
(dumps.wikimedia.org/eswiki/latest/)

“We collected abstracts from public repositories of the
Pontificia Universidad Catdlica de Chile (repositorio.uc.cl)
and Universidad de Chile (repositorio.uchile.cl).

sition among these sentences. To make correct pre-
dictions, the model needs to be aware of both typical
orderings of events and how events are described in
language. In the example shown, the model needs to
understand that the objective of the thesis has to be de-
scribed before the main findings of the study.

As proposed by |Chen et al. (2019) to train the clas-
sifier for this task, we first encode the five sentences
into vector representations x;. As input to the classi-
fier, we concatenate x; and x; — z; for 2 < ¢ < 5:
[x1, 21 — 29,1 — 3,21 — T4, 21 — x5). The output is
between 1 and 5, which indicates the target position of
the first sentence.

1) Se encontré que la adicién de nanoparticulas de silice

aumenta la rigidez del material. @

2) El objetivo de este trabajo es estudiar el efecto de la
incorporacién de nanoparticulas de silice en la rigidez de
material.

3) Las Nanoparticulas de silice fueron sintetizadas uti-
lizando el método sol-gel.

4) Las Nanoparticulas de menor tamafio tienen un mayor
efecto sobre las propiedades del material.

5) La rigidez del material aumenté hasta en un 80% con
la adicién de 30% de nanoparticulas de silice.

Figure 5: SP example of thesis domain. The number
inside the circle shows the correct position of the first
sentence. This sentence belongs in the 2nd place.

3.2. Binary Sentence Ordering (BSO)

BSO is a binary classification task to determine if the
order of two sentences is correct. This task aims to
assess the ability of sentence representations to capture
local discourse coherence. This data comes from the
same three domains of the SP task. However, in this
case, we only take the first two sentences of each text.
Figure [6] provides an example from the Spanish
Wikipedia. The order of the sentences is incorrect as
the “Neue Pinakothek” museum should be mentioned
before describing the art found inside. In order to find
the incorrect ordering in this example, the sentence rep-
resentations need to be able to provide information if
one sentence comes after or before the separation.

As English DiscoEval to create the model inputs to
train the classifiers, we concatenate the embeddings
generated by the sentence encoder of both sentences
with their element-wise difference: [z1, 22,21 — x2].

1) Se centra en el Arte europeo del siglo XIX.
2) El Neue Pinakothek es un museo de arte situado
en Munich, Alemania.

Figure 6: Example from the Wikipedia domain of the
BSO task. The sequence is in the wrong order.

3.3. Discourse Coherence (DC)

The Discourse Coherence (DC) task is a sentence dis-
entanglement task proposed to determine if a sequence
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of six sentences forms a coherent paragraph. We cre-
ate three versions of this task, two from open-domain
dialogue datasets and the other from Wikipedia arti-
cles. Given six coherent contiguous sentences, we ran-
domly replace one of them with a sentence from an-
other sequence. Note that we choose the sentence to
replace uniformly among positions 2-5. We gener-
ate balanced datasets with coherent (positive) and non-
coherent (negative) instances, which results in a binary
classification task.

For the open-domain dialogue dataset, we use the
OpenSubtitlesE] corpus (Lison and Tiedemann, 2016)
and the Gutenberg Dialogue dataset (Csaky and Rec-
ski, 2021). OpenSubtitles is a large corpus, so we ran-
domly retrieve some dialogues and create the splits. In
the case of the Gutenberg Dialogue, we use the origi-
nal splits provided by the author. For the Wikipedia do-
main, we take only one coherent text from each article.
Then we randomly create the splits. In all cases, we
discard paragraphs with fewer than six sentences and
we select the negative sample from other dialogues or
articles in the corresponding domain. Figure[/|shows a
dialog to which the second sentence does not belong.
Like English DiscoEval, we encode the six sen-
tences as vector representations and concatenate them
([1, z2, 23, T4, T5, T6)) as input to the classifier.

1) jnicoldas, ha llegado tu hora!

2) recuerdo que en la galeria obscura me
ofrecisteis vuestra casa.

3) no; prefiero fumarme una pipa.

4) (donde esta tu pipa?

5) en el chaleco.

6) bien; aqui la tienes.

Figure 7: Example of DC from the Gutenberg. The
sentence in bold does not belong to the dialogue.

3.4. Sentence Section Prediction (SSP)

SSP is a task to determine the section of a given sen-
tence. This is based on the fact that the writing style can
vary throughout a document, showing distinct patterns.
The English DiscoEval originally used abstract and
other sections of scientific papers to build the dataset.
For our Spanish version, we use news articles instead.
The news usually has a headline that is a sentence that
presents the main idea of the article, a subhead that is a
group of sentences that helps to encapsulate the entire
piece or informs the reader about the topic, and a body
that tells the entire story (Van Dijk, 1983).

We rely on the MLSUM dataset (Scialom et al., 2020),
which consists of news articles that have the structure
mentioned above. We use subhead and body sentences
because the former has sentences summarizing the en-
tire article, while the latter uses broader wording. Fig-
ure [§] shows an example of each style. We randomly

*http://www.opensubtitles.org/

sample one sentence from the subhead as a positive in-
stance and one sentence from the body as a negative
sample. The task is a binary classification that takes
the representation of the sentence as input.

Subhead: 1os Reyes presiden este sabado el desfile
de las Fuerzas Armadas
Body: Sevilla acoge este sabado el tradicional des-
file de las Fuerzas Armadas, que estara presidido
por los Reyes de Espafia

Figure 8: Examples of SSP. One sentence is from the
subhead, while the other is from the body of a news.

3.5. Discourse Relations (DR)

A direct way to test discourse knowledge is to predict
the relations between sentences, which is why the RST
Discourse Treebank (Carlson et al., 2001) was used
in previous work (Ferracane et al., 2019; [Chen et al.,
2019). We consider the RST Spanish Treebank (dal
Cunha et al., 2011) for our Spanish version, which con-
sists of an annotated corpus with rhetorical relations.
According to RST (Mann and Thompson, 1988), a
text can be segmented into Elementary Discourse Units
(EDUs) linked by means of nucleus-satellite (NS) or
multi-nuclear (NN) rhetorical relations. In the first, the
satellite provides additional information about the nu-
cleus, on which it depends (e.g., Fondo, Condicién).
In the second, several nuclei elements are connected
at the same level, so no element is dependent on any
other (e.g., Unidn, Lista). For instance, Figure E] shows
an example with a relation NS and NN. A relation can
take multiple units, so like (Chen et al. (2019), we rely
on right-branching trees for non-binary relations to bi-
narize the tree structure and use the 29 coarse-grained
relations defined by |da Cunha et al. (2011). We adopt
the originally proposed training and testing splits.

NS-Elaboracién

N

NN-Lista

N
1 2 3

[Se presentan algunos comentarios al Allgemeine
Naturgeschichte und Theorie des Himmels escrito por
Emmanuel Kant y publicado en 1755,]1 [obra donde el
pensador de Koenisberg dio a conocer sus principales
ideas cosmoldgicas.]> [En particular se resefia su expli-
cacidn cualitativa de cémo a partir de un material primor-
dial tenue y difuso, la fuerza gravitacional produjo los
cuerpos que forman el Sistema Solar.]3

Figure 9: An RST Spanish Treebank tree with nucleus-
satellite (NS) and multi-nuclear (NN) relations.

To evaluate the representations, we first encode all
EDUs. We then use averaged EDU representations of
subtrees as inputs. Formally, the input to the classifier
iS [@ieft, Tright, Tiefi © Tright, |Tier — Zrighe|] and the label
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SentEval DiscoEval

Models SC SPC SS LPT SP BSO DC SSP DR

Sent2Vec 75.11 | 59.51 | 76.05 | 66.89 | 36.49 | 54.92 | 55.77 | 70.88 | 36.69
ELMo 71.50 | 61.62 | 62.06 | 69.90 | 37.13 | 55.13 | 58.68 | 72.60 | 45.14
ELECTRA 62.80 | 51.40 | 42.07 | 64.20 | 38.56 | 56.85 | 55.18 | 76.22 | 37.59
RoBERTa-BNE | 72.51 | 54.57 | 41.34 | 68.22 | 41.82 | 57.02 | 56.31 | 76.83 | 39.21
BERTIN 73.54 | 55.47 | 32.53 | 67.72 | 41.66 | 56.66 | 55.54 | 78.42 | 45.86
BETO 76.34 | 58.17 | 55.37 | 69.38 | 41.43 | 57.53 | 60.89 | 75.33 | 47.84
mBERT 70.47 | 60.05 | 67.77 | 71.41 | 43.21 | 57.97 | 63.45 | 77.80 | 51.08

Table 1: Results for Spanish SentEval and Spanish DiscoEval by group. The best performing model is in bold, and
the runner up method is underlined. The reported numbers are accuracy, except SS, which is Pearson’s correlation.

is the relation of the node. xj; and e, are vectors
of the left and right subtrees respectively. For instance,
the input for the label “NS-Elaboracién” from Figure[9]
is Llefy = L1 and Tright = WTM

4. Experiments

4.1. Setup

Parameters We adopt and adapt the original imple-
mentation of SentEval and DiscoEval for our Spanish
version, so the same hyperparameters can be set. We
use the PyTorch version of the classifiers, Adam opti-
mizer with a batch size of 64, and 4 training epochs for
all of the experiments.

Datasets We tokenize each dataset with the spaCy to-
kenizer (Honnibal and Montani, 2017) and save all files
using a common file format with UTF-8 encoding.

4.2. Models

We benchmark all of the main Spanish sentence en-
coders available to date to the best of our knowledge.
SentZVecﬂ (Pagliardini et al., 2018) which is a bilin-
ear model, ELMo (Che et al., 2018) which is based
on bidirectional RNNs. More recent and based on
Transformer (Vaswani et al., 2017)), we evaluate BETO
(Canete et al., 2020), the Spanish version of BERT
(Devlin et al., 2019), BERTINE] and RoBERTa-BNE
(Gutiérrez-Fandifo et al., 2021)), two versions in Span-
ish of the RoOBERTa model (Liu et al., 2019). Finally,
ELECTRAP| (Clark et al., 2020) that was trained on a
small piece of data as part of a tutorial. We also include
the multilingual BERT (mBERT) for further compar-
ison. We use the base version for all models except
ELECTRA, which is a small version.

For evaluating Sent2Vec and ELMo, we use their final
representation. For the Transformer-based models, as
proposed by |[Chen et al. (2019), we use the average
of each layer’s special tokens [CLS] as the sentence
representation.

4.3. Results

Table [T] shows the results of the experiments for all of
the Spanish SentEval and Spanish DiscoEval tasks av-

*https://github.com/BotCenter/spanish-sent2vec
>https://huggingface.co/bertin-project
Shttps://chriskhanhtran.github.io/posts/electra-spanish/

eraged for all of the datasets used for each of the tasks
(for detailed results, see [Appendix B). It can be seen
that, in general, the evaluation of all the language mod-
els’ latent representations in both the Spanish SentE-
val and Spanish DiscoEval tasks show a similar be-
havior compared to their English language represen-
tations counterparts (Conneau and Kiela, 2018; |Chen
et al., 2019). Regarding Spanish SentEval, for the
SC tasks, the BETO model latent representation sur-
passes Sent2Vec, the second-best, by a 1.63 percent-
age difference (pd). This can be explained since BETO
was trained with general domain sentences, capturing
a representation capable of generalizing for any do-
main in the classification task. In general, SPC shows
worse results than SC in terms of accuracy for all lan-
guage models, where the best achieves an accuracy of
61.62%. In the SPC task, it can be seen that ELMo
learned representation surpasses the second-best repre-
sentation (mBERT) by 2.6 pd. The SS task shows that
Sent2Vec representation outperforms other representa-
tions by more than 12 pd in terms of Pearson’s cor-
relation, indicating that this learned representation can
distinguish if a pair of sentences are semantically sim-
ilar better than the representation learned by mBERT,
which was not trained initially for this particular task.
Finally, for the LPT task, the mBERT learned repre-
sentation outperforms the BETO representation by 2.2
pd, showing that, when training a multi-language lan-
guage model such as mBERT, the model can obtain
richer sentence representations for a task that is more
challenging than standard text classification.

Concerning the Spanish DiscoEval set of tasks, the
SP task arises as one of the most challenging tasks,
where mBERT, which is the best performing learned
representation, reaches only a 43.21% accuracy, im-
proving by 3.33 pd over RoOBERTa-BNE, the runner up
model. We observe a similar pattern in the BSO task
since the representation learned by mBERT outper-
forms the second-best model representation by a low
margin of 0.7 pd, showing that training a Transformer-
based model in multiple languages can obtain a richer
representation for the task of ordering two sentences in
a paragraph. A similar behavior is observed for the DC
task, where the mBERT representation outperforms the
runner-up method by more than 4 pd. The SSP task re-
sults indicate that the BERTIN learned representation
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Figure 10: Performance of DiscoEval and SentEval tasks using the [CLS] representation of layers 1 through 12.

surpasses mMBERT by a small margin of 0.7 pd. Finally,
for the RST task, mBERT representation shows the best
performance in terms of accuracy compared to other
language models, outperforming the BETO representa-

tion by 6.7 pd. In general, it is observed that in most of
the DiscoEval tasks, mBERT learned the best represen-
tation. The exception is for SSP, but the difference in
accuracy compared to representation learned by BETO



is small. These results provide evidence that mBERT
learns better representations when trained with multi-
ple languages, allowing it to outperform other models
on most probing tasks.

4.4. Further Analysis

In this section, we perform a per-layer performance
analysis of the representations learned by transformer-
based models. These experiments allow verifying
which layers are more transferable for downstream
tasks. Figure|10[shows the results for all SentEval and
DiscoEval groups.

It can be seen that the best performance fluctuates in
the last layers, primarily between layers 10 and 12.
Moreover, all representations perform well on the early
layers for the SSP task, with accuracy levels near 0.7,
indicating it is relatively straightforward. Neverthe-
less, all representations do not yield competitive per-
formance for the SP task reaching a maximum accu-
racy slightly higher than 0.4, suggesting that they are
ineffective at finding positions of a sentence in a dis-
course. Furthermore, something similar occurs with
the DR task, where all representations achieve accuracy
close to 0.5 for the last layers, showing that discover-
ing relations between elements of discourse seems non-
trivial to solve with the learned latent representations.
Regarding the impact of the training data, we see
that the representations generalize better when being
trained with multiple languages than when using only
Spanish text. Evidence of this is given by the perfor-
mance of the representations learned by mBERT. In
most cases, it outperforms other models’ representa-
tions on several probing tasks. However, BETO repre-
sentation beats the ones learned by mBERT in the last
layers for SC, SS, and SSP, suggesting that for these
tasks, representations learned only with Spanish texts
seem to be more critical for obtaining an informative
latent representation.

Another factor that positions mBERT and BETO as
the two best-learned representations is that both were
trained with more data, implying a better performance
than ELECTRA and BERTIN, which were trained with
fewer data. Interestingly, representations learned by
RoBERTa-BNE do not get the desired performance
compared to other representations, particularly on the
early layers and on the last layers on tasks such as DC,
DR, SSP, SC, and SPC.

5. Related Work

5.1. Language Model Evaluations

We can find at least four approaches in the work car-
ried out in the evaluation of language models. The
first focuses on evaluating the adaptability of a lan-
guage model to a new domain through fine-tuning.
GLUE (Wang et al., 2018) and SuperGLUE (Wang et
al., 2019) are examples of this approach that include
several downstream tasks. The second involves eval-
uating the generalization of text representations by in-

corporating a classifier for downstream tasks on top of
them. Following this approach, SentEval (Conneau and
Kiela, 2018) and DiscoEval (Chen et al., 2019) include
tasks at the sentence and discourse level. The third fo-
cuses on stress tests (Naik et al., 2018}; |Aspillaga et
al., 2020; |Araujo et al., 2021a) that seek to assess the
ability of language models to adapt to cases designed
to confuse them. The fourth objective is an evaluation
from a linguistic perspective (Warstadt et al., 2019; |Et-
tinger, 2020; Puccetti et al., 202 1)) to elucidate the mod-
els’ actual linguistic capacities or knowledge.

The aforementioned benchmarks are scarce for lan-
guages other than English. This, in fact, is the case
for Spanish. For instance, regarding the adaptability
evaluation for Spanish models, (Cafiete et al. (2020) re-
cently proposed GLUES, a Spanish version of GLUE.
In the case of representation evaluation, most of the
work is in a cross-linguistic setting for word (Sahin et
al., 2020)), sentence (Ravishankar et al., 2019) and dis-
course (Koto et al., 2021)) evaluations. For this reason
and following the motivation of works such as RuSen-
tEval (Mikhailov et al., 2021), we provide SentEval
and DiscoEval in Spanish, which consists of tasks orig-
inally created with texts in Spanish and aimed at eval-
uating models of that language.

5.2. Sentence Encoders

Pre-trained self-supervised language models have be-
come the de facto sentence encoders. Early work in
deep learning introduced ELMo (Peters et al., 2018).
With this model, sentence representations are produced
by a mean-pooling of all contextualized word repre-
sentations. After the Transformer model (Vaswani et
al., 2017), several models were proposed (Devlin et al.,
2019;|Liuetal., 2019;/Clark et al., 2020). These BERT-
type models produce sentence representations using
a special token [CLS]. More recently, some models
(Lee et al., 2020; [ter et al., 2020; |Araujo et al., 2021b)
have been proposed to improve discourse-level repre-
sentations by incorporating additional components or
mechanisms into the vanilla BERT.

Furthermore, due to the success of deep learning sen-
tence encoders, some Spanish models were released.
Che et al. (2018)) released ELMo for many languages,
including Spanish. BETO (Canete et al., 2020) the
Spanish version of BERT (Devlin et al., 2019) was
trained on a large Spanish corpus. RoBERTa-BNE
(Gutiérrez-Fandifo et al., 2021), the Spanish version
of the RoOBERTa model (Liu et al., 2019)), was trained
on a corpus of crawled .es domains.

6. Conclusion

We introduce Spanish SentEval and Spanish Disco-
Eval, two test suites for evaluating stand-alone and
discourse-aware sentence representations. Like the En-
glish versions, our work aims to evaluate the represen-
tations of current and future Spanish language models.
Our benchmarks consist of a single pipeline that at-
tempts a fair and less cumbersome assessment across



multiple tasks with text from different domains. As fu-
ture work, more tasks could be included in these bench-
marks. Likewise, other types of evaluations such as
stress or linguistic tests could be carried out to evaluate
the actual capacities of the language models taking into
account the peculiarities of the Spanish language.
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Appendix A: Details of Datasets

Name N Description C Name N Description C
TASS1 14.4k | Polarity (2020 joint task 1) 3 SP wiki/mlsum 18k | Sentence position 5
TASS2 8.4k | Emotion (2020 task 2) 7 SP thesis 14k | Sentence position 5
MC 2.6k | Sentiment (Movie reviews) 2 BSO wiki/mlsum | 18k | Sentence ordering 2
FAC Sk Subjectivity/Objectivity 2 BSO thesis 14k | Sentence ordering 2
SQC 6.7k | Question-type 6 DC wiki/opus 18k | Coherence 2
PAWS-es | 51.4k | Paraphase 2 DC gdd 6.6k | Coherence 2
NLI-es 9.9k | Entailment 2 SSP mlsum 18k | Section prediction 2
SICK-es | 9.8k | Entailment/Relatedness 2 DR rst 3.3k | Rhetorical structure theory | 29
STS14 804 | Semantic Similarity score
STS15 751 | Semantic Similarity score
STS17 250 | Semantic Similarity score

Table 2: Details of the SentEval and DiscoEval datasets. N shows the number of instances and C the number of
classes.
Appendix B: Full Results of Spanish Models
SC SPC SS
TASS | TASS PAWS | NLI | SICK | SICK | STS | STS | STS
Models 1 2 MC FAC | SQC -es -es -es-E | -es-R 14 15 17
Sent2Vec 60.91 | 6547 | 7594 | 9546 | 77.78 | 56.15 | 48.35 | 74.03 | 78.98 | 83.12 | 60.02 | 82.10
ELMo 56.07 | 62.40 | 6691 | 94.66 | 77.48 | 58.8 | 49.28 | 76.78 | 75.56 | 69.76 | 45.88 | 57.02
ELECTRA 58.04 | 54.83 | 65.61 | 94.18 | 41.33 | 55.90 | 36.39 | 61.90 | 56.40 | 54.29 | 30.85 | 26.74
RoBERTa-BNE | 64.10 | 64.62 | 75.11 | 96.66 | 62.07 | 56.30 | 40.60 | 66.82 | 67.79 | 57.11 | 34.13 | 6.31
BERTIN 59.20 | 61.86 | 74.46 | 95.90 | 76.30 | 56.75 | 42.45 | 67.20 | 51.83 | 31.24 | 18.67 | 28.38
BETO 62.95 | 64.44 | 77.01 | 97.60 | 79.70 | 57.65 | 46.39 | 70.46 | 63.24 | 65.84 | 47.36 | 45.01
mBERT 56.28 | 58.02 | 70.00 | 96.92 | 71.11 | 57.50 | 48.63 | 74.01 | 67.77 | 62.14 | 43.96 | 36.71
Table 3: Results of the SentEval tasks for each dataset (SC, SPC, SS).
LPT

Models SentLen | WC I;l; I:fh BiShift | Tense | SubjNum | ObjNum | SOMO | CoordInv

Sent2Vec 73.99 498 | 41.25 | 81.76 | 87.72 83.49 78.50 51.64 74.44

ELMo 4422 | 66.43 | 49.84 | 78.47 | 94.65 87.27 80.21 53.76 74.25

ELECTRA 73.99 498 | 41.25 | 81.76 | 87.72 83.49 78.50 51.64 74.44

RoBERTa-BNE | 77.27 22.60 | 44.80 | 77.07 | 93.63 87.15 79.65 51.98 79.83

BERTIN 75.33 20.84 | 45.02 | 73.40 | 93.36 89.71 73.92 53.80 84.06

BETO 68.85 | 41.60 | 4542 | 75.72 | 93.26 87.30 77.99 51.03 83.27

mBERT 75.41 41.27 | 46.50 | 76.34 | 95.30 89.57 78.22 54.10 86.02

Table 4: Results of the SentEval tasks for each dataset (LPT).
SP BSO DC SSp DR

Models wiki | mlsum | thesis | wiki | mlsum | thesis | wiki | opus | gdd | mlsum | rst

Sent2Vec 42.77 | 3040 | 36.29 | 51.56 | 50.46 | 62.75 | 66.67 | 49.85 | 50.78 | 70.88 | 36.69

ELMo 4450 | 29.88 | 37.01 | 51.42 | 50.89 | 63.07 | 68.73 | 52.62 | 54.69 | 72.60 | 45.14

ELECTRA 45.65 | 3145 | 38.57 | 52.44 | 52.83 | 65.29 | 57.88 | 50.62 | 57.03 | 76.22 | 37.59

RoBERTa-BNE | 47.58 | 35.10 | 42.78 | 52.99 | 51.04 | 67.04 | 68.12 | 50.80 | 50.00 | 76.83 | 39.21

BERTIN 4790 | 33.38 | 43.71 | 52.09 | 49.90 | 67.99 | 60.75 | 53.52 | 52.34 | 78.42 | 45.86

BETO 48.90 | 32.35 | 43.03 | 53.50 | 51.94 | 67.15 | 75.62 | 53.15 | 5391 | 7533 | 47.84

mBERT 51.95 | 3323 | 44.46 | 53.79 | 51.75 | 68.36 | 80.00 | 53.33 | 57.03 | 77.80 | 51.08

Table 5: Results of the DiscoEval tasks for each dataset.
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