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Abstract

There has been extensive work on human word sense annotation, i.e., manually
labeling word uses in natural texts according to their senses. Such labels were
primarily created for the tasks of Word Sense Disambiguation (WSD) and Word
Sense Induction (WSI). However, almost all datasets annotated with word senses
are synchronic datasets, i.e., contain texts created in a relatively short period of
time and often do not provide the creation date of the texts. This ignores pos-
sible applications in diachronic-historic settings, where the aim is to induce or
disambiguate historical word senses or changes in senses across time. To facilitate
investigations into historical WSD and WSI and to establish connections with the
task of Lexical Semantic Change Detection (LSCD), there is a crucial need for
historical word sense-annotated data. Hence, we created a new reliable diachronic
WSD/WSI dataset ‘DWUG DE Sense’. We describe the preparation and anno-
tation and analyze central statistics. We then describe a thorough evaluation of
different prediction systems for jointly solving both WSI and LSCD tasks. All
our systems are based on a state-of-the-art architecture that combines Word-in-
Context models and graph clustering techniques with different hyperparameter
settings. Our findings reveal that using the WSI task as optimization criterion
yields better results for both tasks even when the LSCD task is the focal point of
optimization. This underscores that although both tasks are related, WSI seems
to be more general and able to incorporate the LSCD task.
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1 Introduction

There has been extensive work on manual annotation of word occurrences in natu-
ral texts with word senses [e.g. 1–3] following from an early interest of computational
linguists in the tasks of Word Sense Disambiguation [WSD, 4] (i.e., the task of dis-
ambiguating an ambiguous word given its context) and Word Sense Induction [WSI,
5] (i.e., the task of inducing word senses without predefined sense inventory). How-
ever, the work on (traditional) word sense annotation has been done nearly exclusively
with a synchronic focus, i.e., annotated word uses have been sampled from nar-
row time spans in modern corpora. Consequently, the tasks defined on this data and
models developed to solve them also have a synchronic focus. This ignores possible
applications of WSI and WSD in historical settings, where the aim is to induce or
disambiguate historical word senses or changes in senses across time [6, 7]. Solving
these tasks can be helpful to create historical or etymological dictionaries [e.g. 8, 9] or
inform linguistic analysis [e.g. 10, 11]

In recent years, more and more models solving tasks of lexical semantics have been
applied to diachronic-historic data, i.e., word uses sampled from various time spans
in historical corpora [12, 13] with the main aim of detecting changes in meaning of
words over time, known as the task of Lexical Semantic Change Detection [LSCD,
13]. There are several LSCD models with standard WSD [e.g. 14, 15] or WSI [e.g.
16–18] components [find a recent overview in 19]. Although these components are
central to the models, our experience with the behavior of WSD and WSI models on
diachronic-historic data remains limited. There are indeed specific challenges in WSI
on diachronic-historic data is demonstrated by Laicher et al. [17] showing that standard
clustering algorithms with off-the-shelf BERT [20] are very sensitive to historic spelling
variations.

Additionally, the LSCD task has been formulated such that it does not explicitly
require systems to assign word uses (drawn from two distinct time periods) to their
corresponding senses as the primary evaluation metric focuses on how effectively these
systems quantify the extent of change for some given words [cf. 13]. This is also
due to the fact that previous LSCD datasets were not sense-annotated. However,
going beyond the mere detection of change would be extremely valuable for historical
linguistic research. For example, by asking systems to qualify senses which were lost
or gained.

We argue that in order to bridge the gap between these lines of research, we need
diachronic-historic word sense-annotated data. Hence, we created a new, large and
reliable WSI dataset which we call ‘DWUG DE Sense’, based on the existing LSCD
dataset DWUG DE [13] and conducted various experiments on WSI and LSCD tasks
with our data.1 To the best of our knowledge, this is the first German dataset providing

1The dataset has been introduced originally in Schlechtweg [21, pp. 57–58], where it has been used to
validate a second use-use annotated dataset. We go beyond this previous work by adding a much more
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word sense annotations for different time periods. More specifically, we aim to address
the following research questions:

RQ1. Can human annotators achieve a similar agreement on historical data as on modern
data in use-sense annotation?

RQ2. Does WSI performance vary between periods?
RQ3. Can a single system be optimized to effectively solve both WSI and LSCD for

diachronic data?

In this article, we address these questions through comprehensive experimentation
and analysis. First, we describe the preparation and annotation of the dataset and ana-
lyze the agreement between annotators from a synchronic and diachronic viewpoint.
Second, we conduct a comprehensive evaluation of several systems using a state-of-the-
art pipeline [22] capable of simultaneously addressing WSI and LSCD on our dataset.
These systems use a Word-in-Context (WiC) model to compute the probability that
two word uses have the same sense, which is used to build a weighted graph for each
word with all probabilities between the word’s uses. Finally, a graph clustering algo-
rithm is used to generate sense clusters, allowing predictions for both WSI and LSCD
tasks. Our experiments mainly involve the manipulation of the WiC model, the graph
clustering method, and several other hyperparameters. The main evaluation focus
is on transportability of optimized parameters between WSI and LSCD in order to
answer RQ3. We hypothesize that optimizing parameters for one of the tasks, also
yields optimal parameters for the other one.

This paper is divided into seven sections. Section 2 provides a comprehensive
overview of the existing research on WSI and LSCD, along with key definitions rele-
vant to these fields. In the following section, we describe the creation of our dataset,
exploring its structure, agreement, and the aggregated annotations. Section 4 intro-
duces the two tasks addressed (WSI and LSCD), taking into account the specific
characteristics of the constructed dataset. Section 5 describes the models used in this
study. Section 6 presents the experiments and discusses the results. Finally, Section 7
presents our main conclusions and directions for future research.

2 Related work

2.1 Word meaning annotation

Throughout the paper, we will mean by a word use an occurrence of a word within
an instance of text such as a sentence or a paragraph. By a sense definition we will
mean a textual description of some meaning a target word can express. For shortness,
we will sometimes refer to these concepts by ‘use’ and ‘sense’ if the context sufficiently
disambiguates what we mean.

detailed analysis of the data including annotation examples (Section 3.1.1), statistics (Table 1), time-specific
agreement analysis (Table 2), aggregated data examples (Figure 2 and 3 with discussion) and by performing
WSI and LSCD experiments with computational models (Sections 4–6).
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Word meaning annotated data falls into three main categories: (i) use-sense, (ii)
use-use and (iii) lexical substitution annotation [cf. 3, 21, p. 20]. The first type, use-
sense annotation has a long tradition within the task of WSD [4]. Annotators usually
choose the best-fitting word sense definition for a word use as in this example:

use: [. . . ] and taking a knife from her pocket, she opened a vein in her little arm,
and dipping a feather in the blood, wrote something on a piece of white cloth, which
was spread before her.
sense1: a human limb
sense2: weapon system

There has been extensive work on use-sense annotation and several large-scale anno-
tation projects have been carried out, as e.g. SemCor and OntoNotes [1, 2]. Such data
can also be used for the WSI task as it provides a mapping of uses to clusters, i.e., all
uses annotated with the same sense definition receive the same cluster label [cf. 5, 23].

The (discrete) use-sense assignment approach was criticized to be empirically
inadequate [24–27]. This was (amongst others) supported by the observation that
inter-annotator agreement for certain words was consistently low [2, 28]. Hence, the
alternative annotation strategies for use-use pairs and lexical substitutions were devel-
oped. In the former approach annotators typically judge uses of a word for their
semantic proximity [3, 29] while in the latter approach annotators find synonymous
substitution words [30]. However, these alternative strategies do not solve the problem
of low agreement [cf. 3, 30] and they do not directly provide data usable for WSD and
WSI [31]. While word sense clusters for WSI can be obtained through clustering algo-
rithms McCarthy et al. [31], Schlechtweg et al. [32, 33], such approaches are currently
not thoroughly validated.

There is a growing body of work with a diachronic focus on word meaning [e.g.
7, 12, 34], tackling tasks such as LSCD [21]. This development has brought a num-
ber of diachronic word meaning datasets [e.g. 16, 19, 29, 32, 35, 36]. In contrast to
their synchronic counterparts, these datasets are mainly annotated within the use-
use paradigm.2 On several of these datasets word sense clusters have been inferred
from the human annotation [e.g. 19, 32, 37, 38] which could be used for WSI tasks in
a diachronic setting. However, the inferred clusters often suffer from ambiguity and
sparsity of annotation [21, p. 57ff.]. While we deem this a promising approach, it is
still ongoing research.

Despite the above-mentioned criticisms, the traditional use-sense annotation
approach has several advantages over the use-use setting: (i) The number of annota-
tions needed is much lower [21, p. 45]. (ii) The sense clusters follow directly, so no
additional sense/cluster inference procedure introducing additional noise is needed.
(iii) The annotation is richer as it provides a sense definition and thus allows to define
more tasks on the data, as e.g. WSD. (iv) The agreement is higher than with other
approaches [cf. 3, 30]. (v) The data can be cleaned easily as agreement is calculated
on instances rather than pairs of instances, hence individual instances can easily be
excluded. However, to our knowledge only a small fraction of diachronic datasets is

2This is probably an influence from the early DURel annotation approach [29] relying on the insight that
one does not have to annotate word senses in order to annotate (specific types of) word sense change.
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use-sense annotated [39–42]. Of these only McGillivray [41]’s Latin is publicly avail-
able. The sense example sentences from historical dictionaries [e.g. 8, 9, 43] can be
seen as use-sense annotated data [cf. 44]. However, these sentences do not provide a
realistic task scenario as they are few (often only one per sense) and not randomly sam-
pled from a corpus. Hence, we decided to create a new diachronic use-sense annotated
dataset for the German language.

2.2 Word meaning tasks and models

Currently, several tasks aim to model the meaning of words by utilizing external
resources or considering the contexts in which the words appear. These tasks include
WSD, WSI, WiC, or LSCD among others.

The WSD task asks to disambiguate a word use, i.e., to select the correct sense for
a target word use from all senses of this word listed in some kind of sense inventory
(e.g. WordNet) [23]. Gold data for WSD is usually given by use-sense annotated data
(see above). In general, this task requires leveraging various linguistic features, such
as surrounding words, syntactic structures, and semantic information, to resolve the
ambiguity accurately. There are different ways to approach the WSD task including
supervised and unsupervised approaches. WSI asks to cluster word uses into clusters
corresponding to distinct senses of this word without relying on any predefined sense
inventory [5]. It is usually modeled in an unsupervised way.

WiC is a binary classification task that asks to predict whether a word in two uses
has the same meaning or not [45]. Gold data for WiC is usually given by use-use anno-
tated data. Several models have been developed to tackle the WiC task, ranging from
static word embeddings to more advanced contextualized models. Early approaches
using static embeddings faced challenges in accurately determining the similarity or
dissimilarity between different contexts due to the limitation of representing multiple
word meanings. This deficiency, known as meaning conflation, hindered their abil-
ity to capture the nuanced variations in word senses [46]. In contrast, contextualized
models [e.g. 20] have demonstrated superior performance by considering each context
as a distinct representation, enabling them to capture the subtle differences in word
meaning. These models leverage contextual information to generate more fine-grained
representations, leading to improved accuracy in the WiC task [45, 47].

The task of detecting words that change their meaning over time is called Lexi-
cal Semantic Change Detection [13]. Various models have been developed to address
this task, including static and contextualized embeddings. Notably, WiC models have
shown remarkable performance in this task, achieving the best results in recent studies
[18, 19, 48, 49].

The literature review underscores that despite the extensive research devoted to
modeling tasks like WiC, WSI and LSCD, a comprehensive understanding of their
interconnections remains elusive. Notably, the absence of diachronic-historic word
sense-annotated data presents a significant challenge to conducting a thorough anal-
ysis in this domain. To our knowledge, this study represents a pioneering effort to
bridge this gap.
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Fig. 1: Visual comparison of tasks involved in LSCD. u1, u2, and u3 represent word
use samples. Arrows represent use-sense assignments for WSD, cluster assignments for
WSI, and pairwise judgments for WiC.

2.2.1 How Tasks Relate to Each Other

Note that there is a close conceptual connection between WSD, WiC, WSI and the
various definitions of LSCD [50] as the process to derive gold labels for LSCD requires
at least one of the other tasks to be solved. For instance, Schlechtweg et al. [13] employ
a WiC and a WSI step in their annotation process while Basile et al. [40] employ a
single WSD step and Schlechtweg et al. [29] employ a single WiC step. All of these
approaches have in common that they require some form of sense distinctions: WiC
asks to distinguish senses of use pairs, WSI asks to distinguish senses within sets of
uses, and WSD asks to assign senses to individual uses. Hence, because of this sense
distinction information, they can all be applied to measure sense changes over time.
We summarize the relations between the tasks in Figure 1.

Based on the above analysis, we hypothesize that the WSI task can serve as a
subtask for solving the LSCD task. By clustering different contexts of a word and
employing appropriate metrics, we can quantify the extent to which a word’s meaning
has shifted from one time period to another, thereby incorporating the dimension of
time into our analysis.

3 Datasets

For annotation we chose the existing LSCD dataset DWUG DE [32], which was anno-
tated within the use-use paradigm (see Section 2). This had the advantage that the
target words and their uses had already been sampled. We only had to get sense
definitions. The dataset has the additional advantage that word uses were randomly
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Data n N/V/A |U| AN |J| KRI STYLE
DWUG DE 50 34/14/2 ≤100+≤100 8 1.7 .67 use-use

DWUG DE Sense 24 16/7/1 25+25 3 2.9 .87 use-sense

Table 1: Statistics for the latest version (2.3.0) of DWUG DE and the new
DWUG DE Sense dataset. Both datasets contain German word uses from
two historical corpora covering 1800–1899 and 1946–1990 respectively. n =
no. of target words, N/V/A = no. of nouns/verbs/adjectives, |U| = no. uses
per word (t1+t2), AN = no. of annotators, |J| = avg. no. judgments per
annotation instance, KRI = Krippendorff’s α, STYLE = annotation style.

sampled from historical/diachronic corpora.3 DWUG DE has been annotated in mul-
tiple rounds corresponding to different published versions of the data set. We sampled
uses for annotation from Version 1.0.0.4

3.1 DWUG DE

DWUG DE contains German word uses from 2 time periods annotated with use-use
judgments from multiple annotators. The authors sampled pairs of word uses such as
(1) and (2) from two historical corpora (1800–1899, 1946–1990) and asked annotators
to rate them on a relatedness scale from 1 (unrelated) to 4 (identical).

(1) Im Ohrwurm ist der obere Magenmund inwendig mit einigen Zähnen in zwey
Reihen besetzt.
‘In the earwig the upper stomach mouth is occupied inside with some teeth in
two rows.’

(2) Werden die Lieder Ohrwürmer, klingelt auch die Kinokasse.
‘If the songs become catchy tunes, the cinema cash register also rings.’

The annotated pairs were represented as a weighted graph and clustered with Corre-
lation Clustering. All uses sharing a cluster were then interpreted as having the same
sense and the semantic change for each word was measured based on these clusterings.
Some statistics for the dataset are shown in Table 1.

3.1.1 DWUG DE Sense

We randomly chose 24 target words (out of 50) from the DWUG DE dataset and
extracted sense definitions from two historical dictionaries [8, 43].5 We merged the
main sense definitions (no sub-sense definitions) from both dictionaries and included
multiple definitions of the same sense by choosing the one that seemed clearer (better

3Another positive side effect of relying on an existing dataset is that we have an independent annotation
for the same data, allowing for comparisons.

4https://zenodo.org/record/5543724
5In order to reduce the annotation load, we sub-sampled both target words and their uses.
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comprehensible) to one of the authors. Figurative meanings listed in DWDS [43] were
treated as separate senses.

We then randomly sampled 50 uses for each target word (25 per time period from
at most 100 in the original dataset) and asked three annotators to label each use
with a sense definition best describing meaning of the target word in this use.6 The
annotators were asked to assign the label ‘andere’ (‘other’) to the use if none of the
definitions listed for the target word was suitable. Also the annotators had the option
to skip examples, e.g. if they were ambiguous or unclear to them. One annotator is a
professional computational linguist, another one holds a degree in linguistics and the
third annotator was a current university student with German as a major subject. The
annotators had no access to the data before the annotation. In the first round, only
the computational linguist annotated the data. This annotator provided additional
sense definitions for four words (abdecken, Fuß, Manschette, Schmiere) because she
deemed the provided definitions insufficient for some uses. These additional definitions
were then added to the previous ones and presented indistinguishably to the two other
annotators in the second round of annotation.7

Consider the following annotation example from the final annotated dataset for
the word Ohrwurm:

use: Im Ohrwurm ist der obere Magenmund inwendig mit einigen Zähnen in zwey
Reihen besetzt., ‘In the earwig the upper stomach mouth is occupied inside with
some teeth in two rows.’
sense1: Insekt, (von) dem der Volksglaube annimmt, daß es gerne Schläfern ins Ohr
kriecht, ‘insect, which is popularly believed to like to crawl into the ear of sleepers’
sense2: eingängige Melodie, ‘catchy melody’
sense3: Zuträger, Schmeichler, ‘informer, sweet-talker’
sense4: andere, ‘other’

This particular example was annotated with ‘sense1’ by all three annotators. This is
different for the following example of abgebrüht :

use: [. . . ] das war ein finsterer Herr mit dem harten Blick eines abgebrühten
Schellfisches., ‘[. . . ] that was a sinister gentleman with the hard look of a
blanched/hard-nosed haddock.’
sense1: mit kochendem Wasser übergoßen, ‘doused with boiling water’
sense2: gefühllos, frech, dickfellig, abgehärtet gegen sittl. Eindrücke etc., ‘callous,
insolent, thick-skinned, hardened to moral impressions, etc.’
sense3: andere, ‘other’

Two annotators assigned ‘sense1’ in this example, while one annotator assigned
‘sense2’.

Find an overview of the annotated data in Table 1, including a comparison to the
original DWUG DE dataset. DWUG DE Sense has roughly half the number of target

6The data for some words has multiple repeated uses, e.g. Ohrwurm. Similarly, some uses contain a target
word several times, and we treat each of these occurrences of the target word as a separate use. Hence, the
same sentence may occur various times with the same target word in different places, e.g. for Abgesang. We
did not remove these instances in order to maintain the data set as realistic as possible.

7The annotated data with all derived labels is available at https://doi.org/10.5281/zenodo.8197552.

8

https://doi.org/10.5281/zenodo.8197552


A B C full old new
A .84 .89
B .89

full .87 .83 .90

Table 2: Agreement (Krippendorff’s
α) between annotators on sense def-
inition annotation. Left: Pairwise
agreement between annotators on
full data. Right: Overall agreement
between annotators per time period.

words of DWUG DE and between 1
3 and 1

4 the number of annotated of uses per word.
However, it has a considerably higher average number of judgments per annotation
instance (2.9 vs. 1.7) while employing much less annotators (3 vs. 8).8 This stems from
the lower annotation load per use in the use-sense annotation schema (see Section 2).
The higher judgment density brings higher reliability of aggregated data and better
possibilities of data cleaning, i.e., removing instances with low agreement (see Section
3.1.1).

Agreement

We present the pairwise agreement of the three annotators in Table 2 as well as the
overall agreement (full), where 134 judgments assigning ‘other’ are ignored. Krippen-
dorff’s α is 0.87 for all three annotators and 0.84/0.89 for pairwise agreements, which
can be interpreted as quit good agreement. Percentage agreement (ITA) and pair-
wise Cohen’s Kappa [51] yield similar scores with 0.88 and 0.87 for mean pairwise
agreement. According to Erk et al. [3], sense annotation studies relying on the Word-
Net sense inventory show percentage agreement from .67 to .78. Hence, we observe
higher agreement than previous synchronic studies. Note, however that agreement also
depends on variables such as the granularity of the sense of inventory.9 The agreement
for diachronic use-use annotated data ranges between 0.52 [36] and 0.67 [32].10 We
conclude that our dataset is sufficiently reliable to serve as a gold standard.

We now compare the inter-annotator agreement between the two time periods in
order to understand whether the annotation task is harder on the old versus the new
data. Please find a comparison of the overall agreement per time period in Table 2
(right). The agreement for the old time period is considerably lower than for the new
time period (.83 vs. .90). This indicates that the task of assigning sense definitions is
harder for historical than for modern data. This result addresses our initial research

8The average number of judgements per instance is lower than 3 because a small number of uses were
skipped by some annotators during the annotation.

9Note also Section 3 for factors potentially influencing the agreement.
10However, these are annotated on 4-point scale which may not be comparable to our binary annotation.
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Data |U| |S| full |S| old |S| new
maj2 23+23 2.9 2.3 2.5
maj3 16+18 2.8 1.8 2.4

Table 3: Statistics of cleaned datasets. |U |
= average number of uses per time period,
|S| = average number of senses (in all cases
the median number of senses is 2).

question (outlined in Section 1) by showing that there is a tendency for human anno-
tators to show higher agreement on modern data. This is in line with expectations, as
annotators, despite their expertise, are inherently more familiar with modern data.

It also suggests that computational models may struggle similarly more with the
historical than with the modern data. Note though that by cleaning the data (as
described in Section 3.1.1) this difference between historical and modern data should
be considerably decreased.

Cleaning and label derivation

After the annotation process we created two different cleaning conditions: (i) We
removed all instances for which all annotators assigned different labels. We also
removed uses with at least two missing annotations, leaving 1117 uses (from 1200).
For each use, we then chose the sense definition assigned by the majority of annotators
(at least two) as gold label. We call this cleaned version of the data ‘maj2’ (majority
label with agreement of at least two annotators). (ii) We removed all instances where
not all 3 annotators annotated the same label. We also removed uses with missing
annotations, leaving 826 uses. To each use, we assigned the label chosen by the major-
ity of annotators (in this case by all three). Hence, we call this version of the dataset
‘maj3’ (majority label with agreement of all three annotators).

We refer to the subset of annotated data corresponding to the old/new time period
as ‘DWUG DE Sense Old/New’ respectively. Sense clusters for WSI are given by the
aggregated gold sense labels from above. From the extracted clusters we compute
sense frequency distributions and infer binary and graded change labels as described
in Schlechtweg et al. [13]. The binary change score measures whether a sense was
gained or lost over time, or not.11 The graded change score corresponds to the Jensen-
Shannon distance between sense probability distributions. As an example, consider
Figure 2. On the left, we see the sense frequency distribution for the full (both time
periods) data for the word Ohrwurm which was aggregated and cleaned with the maj3
condition. Ohrwurm has two senses with rather balanced frequencies in the full data
(19 vs. 16 uses). However, in the old and new portion only one of these senses exists
respectively. Hence, the word lost a sense and gained another sense (binary change).
No sense exists across the two time periods, i.e., the word completely changed its

11Only senses reaching a certain occurrence frequency are considered. Find the code used to aggregate
and clean the data, and to derive proximity and change labels at https://github.com/Garrafao/WUGs.
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Fig. 2: Sense frequency distribution for Ohrwurm from cleaned dataset (maj3).

meaning and has a Jensen-Shannon distance of 1.0 (see also Figure 5). Manschette
in Figure 3, instead, has a skewed sense frequency distribution in the full data with
three senses and the most frequent sense dominating strongly in frequency. In the
old portion of the data, only the dominating sense exists while in the new portion
the two less frequent senses occur with comparably low frequencies. Hence, these two
senses are gained over time. The Jensen-Shannon distance is medium-high with 0.46
reflecting the low frequency of the gained senses.

For each of the two cleaning conditions (maj2, maj3), we also infer binary WiC
(or semantic proximity) labels for all use pairs per word in a procedure similar to the
one described in Pilehvar and Camacho-Collados [45], i.e., pairs of uses with the same
sense definition as majority label receive label ‘1’ while those pairs with different sense
definitions receive label ‘0’. This means that use pairs from our dataset also have WiC
annotations and can be used for evaluating WiC models.

Please find some statistics of the cleaned version of the dataset in Table 3, respec-
tively. The cleaning leads to a slight drop of the average number of uses per time
period for maj2, and a larger drop for maj3. The average number of senses is 2.9 and
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Fig. 3: Sense frequency distribution for Manschette from cleaned dataset (maj3).

2.8 for different cleaning conditions on the full data. On all data splits (full/old/new),
the average sense number is lower for maj3 as a result of the stronger cleaning. For the
old portion, the difference between the portions is most pronounced (2.3 vs. 1.8) due
to higher disagreement between the annotators. Figure 4 shows the number of senses
per word for maj3 on the full data. Most words have two senses across time periods
and there are individual exceptions with 1, 6 and 7 senses respectively (artikulieren,
Schmiere, Fuß). Figure 5 shows the Jensen-Shannon distance between cluster prob-
ability distributions for each word for maj3, i.e., the graded change values inferred
on the annotated and cleaned data. As we see, they are well-distributed across the
possible values between 0.0 and 1.0. Some words have complete change (Ohrwurm,
Seminar) while others have no change at all (artikulieren).12

12Note that this is after cleaning. So, with different (less strict) cleaning conditions the change values
may be different.
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Fig. 4: Number of senses per word for cleaned dataset (maj3).

4 Tasks

The aim of our study is to establish a coherent relationship among word meaning
models, particularly when applied to diachronic-historical word sense annotated data,
as discussed in Section 1. With the creation of a dataset tailored to these specifica-
tions, this section provides a more precise definition of the two tasks central to our
investigation: WSI and LSCD.

4.1 WSI

The WSI task is an unsupervised task that considers grouping uses corresponding
to different senses of a given target word into clusters or groups. These clusters are
interpreted as individual senses considering the context in which the given target
word occurs [52, 53], and do not have to correspond to a predefined set of senses for
evaluation. It is closely related to WSD, but with a crucial difference: WSD requires
a predefined sense inventory for each word, making it a supervised task. We chose
to focus on WSI rather than WSD in our experiments due to the limited size of our
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Fig. 5: Jensen-Shannon distance between sense probability distributions for cleaned
dataset (maj3).

dataset. With only a few target words associated with a small number of contexts, the
dataset is considered insufficient for effectively addressing WSD. However, the high
quality annotations shown in Table 2 allow us to derive cluster labels using the target
word senses, making our data suitable for the task of WSI.

Our dataset differs from more standard WSI and WSD datasets [54] by its inclusion
of sense annotations of uses coming from two different time periods. As mentioned
in Section 1, this unique feature raises important questions about the relationship
between sense detection and semantic temporal drifts. Specifically, we can investigate
whether WSI systems yield improved results during certain time periods compared
to others. Moreover, utilizing the WSI task on diachronic word-sense annotated data
offers a more detailed understanding of the system’s capability to detect semantic
changes.

We use the Adjusted Rand Index (ARI) [55] to measure systems’ performance on
this task. ARI is essentially a measure of the similarity between two clusterings (parti-
tionings) of a dataset. It is used to evaluate the performance of clustering algorithms by
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G, D = (23, 17) G1, D1 = (20, 0) G2, D1 = (3, 17)

Fig. 6: Word Usage Graph from Zamora-Reina et al. [19], for the word servidor (left),
subgraphs for old corpus G1 (middle) and for modern corpus G2 (right). The colors
correspond to the clusters. black/gray lines indicate high/low edge weights.

comparing the agreement between the predicted clusters and the true clusters (ground
truth) of the data. A noteworthy property of this metric is that it does not requiere
predicted and gold clusters to be compatible in terms of the number of categories as
it operates at the level example pairs in its calculation.

4.2 LSCD

The LSCD task has been defined differently in the literature. For this work, we adopt
the widely accepted graded view of the task presented in [13, 19], which is described
below:

Given a set of target words and a set of uses U1 and U2 for each of them, the task
is to rank the target words according to their degree of LSC between U1 to U2.

The gold standard rankings are computed using the Jensen Shannon distance of the
sense frequency distribution for each word between the two time periods, thereby gen-
erating a list of words sorted by the degree of semantic change [13, 19]. Finally, the
evaluation metric used is the Spearman correlation [56] between the gold and pre-
dicted word rankings. Our dataset is well-suited for addressing this task, as it provides
the necessary information for computing the sense frequency distribution for each
word in both time periods and subsequently constructing the graded change rank-
ings. This allows to evaluate LSCD systems based on their correct sense assignments
for two different time periods, enabling an assessment of their ability to compute
sense distribution changes. We argue that this approach provides a more comprehen-
sive understanding of how well these systems capture and comprehend semantic shifts
over time. A central research question of this study is to investigate the relationships
between these two tasks in terms of how systems perform across them.
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5 Models

This section provides a detailed description of the model architectures that we employ
in our experiments to solve the tasks defined above. We present each component part
of the architecture and provide a comprehensive explanation of its role in the overall
system. By doing so, we aim to provide a clear understanding of how the system
operates and how it was designed to address the specific research questions of interest.

Our architecture is based on state-of-the-art models applying components used in
one of the recent LSCD shared tasks [13, 19, 48]: First, we use a WiC model [18],
as described in Section 5.1, to generate predictions for pairs of uses that assess the
similarity of a target word based on its contextual information. Second, the WiC model
predictions are used to construct a weighted graph, called Word Usage Graph (WUG)
[32], where nodes represent uses and edges represent the probability that two uses
are similar. Finally, clustering algorithms are applied to the WUG, producing clusters
that correspond to the different senses of the target word.13 Overall our pipeline is
based on three main steps (see Figure 7):

1. apply WiC model to score all pairs of word uses of each target word separately,
2. build the WUG, i.e., a graph with nodes corresponding to different uses of the same

target word and edges weighted with WiC scores for the corresponding pairs of uses,
3. apply clustering algorithms to word uses to potentially establish meaningful clusters

representing word senses.

From the full cluster graph, we can construct two time-specific subgraphs with two
time-specific frequency cluster distributions, from which we calculate graded change
predictions with Jensen Shannon distance (see Section 3). Find an example of a clus-
tered WUG in Figure 6. It shows the full graph G on the left and the time-specific
graphs G1 (old) and G2 (new) with their respective cluster frequency distribution. We
describe the three parts of our pipeline with more detail in the subsections below.14

5.1 Word-in-Context

The WiC task is to determine if two occurrences of the same ambiguous target word
in two different sentences or text fragments have the same or different senses [45]. To
solve this task we employ several DeepMistake models [18, 57], which had previously
shown SOTA or near-SOTA results in two shared tasks [19, 48]. These models were
trained as probabilistic binary classifiers predicting the probability that two given
occurrences of some target word have the same sense. We use this probability as a
measure of similarity between word uses, with higher probability corresponding to

13We also tried experimenting with substitution-based state-of-the-art models, find more details in
Appendix A.

14The architecture of our pipeline implies that there are considerable differences between the derivation
of the gold clusters (Section 3.1.1) and model clusters: Gold clusters are derived from use-sense judgments
not requiring clustering as we filter out all ambiguous judgments. Model clusters are derived from (pairwise)
use-use similarity predictions from a WiC model with an additional clustering algorithm. LSCD is then
indeed measured in the same way from gold and model clusters. Hence, even if the WiC model were the ideal
approximator of human (WiC/use-use) judgements, then model WSI and LSCD results are not bound to
be perfect because the ground truth was not constructed with a clustering of use-use judgments, but from
use-sense judgments. Of course, there is a certain correspondence between human use-use and use-sense
judgments, but this correspondence can be ambiguous.
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Fig. 7: Overview of the architecture used to generate predictions for the WSI and
LSCD tasks.

more similar uses. All models we employ have the same architecture, which was shown
to perform best in the previous studies. The difference between the models lies in the
data they were trained on. Since none of the DeepMistake models was trained on any
labled WiC data in German, we take the models that had previously shown the best
results in the LSCD shared tasks in Russian and Spanish, which were trained on a
mixture of diachronic and synchronic WiC data in these languages. For comparison, we
additionally employ the models trained on a synchronic WiC dataset in 5 languages,
and also on subsets in English or in Russian only. In total, 6 WiC models were involved
in the process of hyperparameter selection.

5.1.1 The architecture of DeepMistake

Given a pair of uses of some target word, these uses are concatenated and encoded
by the XLM-R large backbone [58]. Specifically, the backbone gets the input in the
following format: <s>usage1</s>usage2</s>.15 For each of two occurrences of the
target word the outputs from the last Transformer layer at the positions of subwords
of the target word are averaged (i.e. mean pooling over subwords of the target word is
done). Thus, we get two contextualized embeddings for two occurrences of the target
word.

Then two contextualized embeddings are combined and passed to the classification
head. Following [18], we concatenate the L1-distance and the dot product between the
normalized embeddings: (∥x̄− ȳ∥1, ⟨x̄, ȳ⟩). The classification head consists of a batch
normalization and a linear layer followed by the softmax over two classes. Models were
trained on several WiC datasets using the CE loss. Both the XLM-R backbone and
the classification head were fine-tuned.

Taking into account the symmetric nature of the same-sense relation, i.e. whether
two occurrences of some target word have the same sense or different senses
should not depend on the order in which these occurrences appear, DeepMistake
employs both training time and test time augmentation. During training, for each

15When an input is longer than L = 500 subwords, we shorten it to be exactly this length. Specifically,
we shorten left and right contexts of each usage that are longer than L/4 subwords proportionally to their
extra length and leave those that are shorter than L/4 intact.
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Data source Languages size #targets Avg. len.

MCL-WiC

en-en 8008 3728 48
ru-ru 708 352 41
fr-fr 708 352 46
ar-ar 708 354 45
zh-zh 708 342 -
en-nen∗ 32 16 51

RuSemShift ru-ru 3898 70 51
Spanish DWUG es-es 5443 15 167
Spanish XL-WSD es-es 8260 310 98

Table 4: Training data of the employed DeepMistake models.
Each example is a pair of uses of the same word in the same lan-
guage, except for en-nen∗ which are cross-lingual examples with
one usage in English and another in French, Russian, Arabic or
Chinese.

<s>usage1</s>usage2</s> a symmetric example <s>usage2</s>usage1</s> was
automatically generated, thus increasing the number of training examples. During
inference for each edge in a WUG two (ordered) pairs of uses are generated and scored
by DeepMistake, then the scores are averaged to get the final edge weight.

5.1.2 WiC training and model variants

In this work we experimented with several DeepMistake models differing in how they
were trained and which data they were trained on. The training examples were taken
from several source datasets which are summarized in table 4.

1. MCL-WiC is a synchronic Multilingual and Cross-Lingual Word-in-Context
dataset [59]. For training the authors of DeepMistake employed the original train-
ing set in English, 70%16 of each development set in French, Russian, Arabic, and
Chinese, and also all the examples from the trial sets including few cross-lingual
examples.

2. RuSemShift is a diachronic dataset proposed in [36] and consisting of pairs of
uses in Russian from pre-Soviet, Soviet and post-Soviet epochs. The original labels
are values from 1 to 4. For training DeepMistake all pairs with labels 3 or larger
were treated as positive examples and the rest as negative ones. Compared to the
Russian part of MCL-WiC, RuSemShift contains 5x more examples but 5x less
different target words.

3. Spanish DWUG is a diachronic dataset in Spanish from [19] containing pairwise
human annotations from 1 to 4 similarly to RuSemShift. For training DeepMistake
only pairs with the gold scores of 1 and 4 were employed as negative and positive
examples correspondingly, all other pairs were filtered out. This kind of filtering
was shown to be beneficial for the model performance [18].

16The rest 30% were used as validation data for early stopping.
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4. Spanish XL-WSD is the Spanish part of the synchronic XL-WSD Word Sense
Disambiguation dataset [60], which was converted to the WiC format. Specifically,
the Spanish development and test subsets of this WSD dataset were taken, and all
pairs of examples sharing the same target word lemma were generated. Those pairs
having identical sense labels for both usages of the target word were labeled as
positive, and the rest as negative. Compared to the Spanish DWUG, this dataset
suggests much higher diversity of target words.

We experimented with the following DeepMistake models.

1. MCL→RU (or “mean+dist l1ndotn-hs0 on MCLnen−acc
CE →RSSdev2−sentSpear

CE ” in
the notation of [57]) is the DeepMistake model that has shown the best results on
the Russian RuShiftEval-2021 dataset17. It was fine-tuned in two stages, first on
the multilingual MCL-WiC dataset and then on the diachronic RuSemShift dataset
in Russian.

2. MCL→ES (a.k.a. “MCL→DWUG esbin2ALL+XL-WSD” in [18]) is the DeepMistake
model that has achieved the best Spearman’s correlation with the gold COMPARE
scores among all participants of the Spanish LSCDiscovery-2022 shared task. The
first stage of fine-tuning is identical to the previous model, but the second stage
was performed on both synchronic and diachronic data from Spanish DWUG and
Spanish XL-WSD.

3. ALL (a.k.a. “MCL+RSS+DWUG esbin2ALL+XL-WSD” in [18]) is the model that
has achieved the best Spearman’s correlation with the gold JSD scores among all
DeepMistake models in LSCDiscovery-2022. It was fine-tuned on all training data
listed in table 4 in a single stage.

4. MCL (a.k.a. “MCL-WiC(CE)” in [57]) is fine-tuned in one stage on all the MCL-
WiC data in 5 languages.

5. enMCL (a.k.a. “MCL-WiC train-en-en(CE)” in [57]) is fine-tuned in one stage on
the English part of MCL-WiC only.

6. ruMCL (a.k.a. “MCL-WiC ru-ru(CE)” in [57]) is fine-tuned in one stage on the
examples from MCL-WiC in Russian only. Additional 1000 examples from the test
set in Russian were added, resulting in 1708 examples in total.

5.2 Building the Word Usage Graph

With the predictions of the WiC model, a complete graph is constructed in which
the nodes represent uses and the weighted edges denote the similarity between pairs
of uses. The resulting graph serves as a structural representation of the dataset that
allows clustering algorithms to identify different senses of a target word based on the
weighted edges. We explore different mechanisms for constructing the graph, which
can be expressed through the following hyperparameters:

17This is an improved version of the best model from [57], it has achieved the average Spearman’s corre-
lation with the gold COMPARE scores across all pairs of time periods equal to 0.85, thus, outperforming
the winner of the RuShiftEval-2021 competition. See https://github.com/Daniil153/DeepMistake/ for all
metrics of this model.
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Parameter Values

binarize [True, False]

quantile [1,...,10]

WiC model

[enMCL, ruMCL,
MCL→RU

MCL, MCL→ES, ALL]

fill diagonal [True, False]

use disconnected edges [True, False]

Table 5: Hyperparameters to build a WUG.

• threshold: All edges with weights less than this hyperparameter are dropped. Dur-
ing grid search, it acquires the values of the 10%, 20%, ..., and 90% percentile of all
edge weights, along with a default value of 0.5.

• binarize: When set to true, all edges are assigned a weight of 1 (subsequent to
dropping the edges with weight less than threshold).

• fill diagonal: This parameter controls if the main diagonal of the adjacency
matrix is filled with 1.0 or 0.0 as value.

• use disconnected edges: When set to true, edges with a weight less than the cutoff
threshold will be kept as part of the network with a weight of 0.0. For Chinese Whis-
pers and Spectral Clustering (see Section 5.3), this value will default to True, for
WSBM and Correlation Clustering we will only keep them in case of binarization.18

We additionally scale the weights of each graph with a MinMaxScaler fitted on the
full set of similarity predictions of the respective WiC model because scores are tightly
center around 0.5. Table 5 shows a summary of the hyperparameters needed to build
a WUG.

5.3 Graph Clustering

In the final step of our pipeline, we apply graph clustering methods to our WUG
to obtain word senses in an unsupervised fashion. Below, we describe all the graph
clustering methods that we consider in this study. Additionally, Table 6 provides a
comprehensive overview of the clustering methods along with the parameter ranges
applicable to each model.

5.3.1 Chinese Whispers

Chinese Whispers (CW) is an efficient, randomized clustering algorithm with a time
complexity linear with respect to the number of edges [61]. The algorithm first assigns
all nodes to different clusters. Then the nodes are processed in randomized order for

180-weighted edges are removed for WSBM and Correlation Clustering (without binarization) because
otherwise wrongly influence the clustering algorithm.
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Clustering method Parameter Values

Chinese Whispers weighting [lin, top, log]

Correlation Clustering threshold cc 0.5

WSBM
[binomial, poisson, geometric,

distribution normal, exponential]

Spectral Clustering nc [Silhouette, Calinski-Harabasz, Eigengap]

Table 6: Clustering method hyperparameters.

a small number of iterations (we set this hyperparameter to 20) and are assigned to
the strongest cluster in the local neighborhood, i.e., the cluster whose sum of edge
weights to the current node is maximal. The calculation of edge weights is controlled
by the weighting hyperparameter, which takes three different values:

1. lin: This calculates the weight of an edge between two nodes in a graph using linear
weighting, which is the edge weight divided by the degree of the destination node.

2. log: This computes the weight of an edge between two nodes in a graph using
logarithm weighting, which is the edge weight divided by the logarithm of the degree
of the destination node.

3. top: This keeps edge weight as is.

We use the implementation provided by Ustalov et al. [62].

5.3.2 Correlation Clustering

We use a variation of Correlation Clustering (CC) [63], a graph clustering tech-
nique which minimizes the sum of cluster disagreements, i.e., the sum of negative
edge weights within a cluster and the positive edge weights across clusters [13]. This
method has, to our knowledge, not previously been employed for the WSI task.
However, it has been used extensively in the LSCD context to cluster human anno-
tations [19, 32, 37, 38, 64–66], but also to cluster model predictions [18]. Correlation
Clustering has hyperparameters for splitting edge weights into positive and negative
(threshold cc), for the maximum number of senses (set to 10), and for maximum
attempts and maximum iterations for simulated annealing (set to 2000 and 50000
respectively). threshold cc is set to 0.5. It is worth noting that threshold cc is
normalized with the same scaler as applied to all edge weights (see above).
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5.3.3 Weighted Stochastic Block Model

We use a Bayesian formulation of the Weighted Stochastic Block Model (WSBM), a
generative model for random graphs popular in biology, physics and social sciences
[67, 68]. The model has been first applied on WUGs by Schlechtweg et al. [33] and
subsequently by Kotchourko [69] and Tunc [70]. The basic assumption of the WSBM
is that nodes belong to latent blocks (clusters), and that nodes in the same block
are stochastically equivalent (i.e., they have edges drawn from the same distribution).
Fitting the model is equivalent to determining the optimal latent block structure pro-
viding a clustering of word uses.19 We use the WSBM version described in Schlechtweg
et al. [33] marginalizing out edge probabilities.

The WSBM model supports several distributions from which edge weights are
drawn through the distribution parameter which can take one of the following val-
ues: exponential, normal, poisson, binomial, and geometric.20 Exponential and normal
distribution are only applicable to real-valued edge weights while poisson, binomial,
geometric distribution are only applicable to discrete edge weights. Hence, we apply
the former two distributions only to non-binarized graphs while we apply the latter
three distributions only to binarized graphs.

5.3.4 Spectral Clustering

Spectral Clustering (SC) is a class of algorithms that apply clustering to a low-
dimension projection of the affinity matrix of the graph [71]. We use the scikit-learn21

implementation with default hyperparameters. We apply the K-means algorithm to
find clusters in the reduced-dimensional space. This algorithm requires the number of
clusters as input parameter. Next, we explain the methods employed for selecting the
number of clusters.

Silhouette Score

This is defined as the mean silhouette coefficient of all nodes. The coefficient is the
difference of the mean nearest-cluster distance and the mean intra-cluster distance,
divided by the maximum of the two [72].

Calinski-Harabasz Score

The score is defined as ratio of the sums of between-cluster dispersion and of within-
cluster dispersion [73].

Eigengap heuristic

This technique selects the number of clusters k as the value which maximizes
λk+1 − λk, where λ1, λ2, · · · , λk are the eigenvalues of the affinity matrix Laplacian
[71].

In the case of Silhouette and Calinski-Harabasz Score, the clustering with the
highest score was selected, as these metrics are designed to favor more representative

19https://graph-tool.skewed.de/static/doc/autosummary/graph tool.inference.BlockState.html
20https://graph-tool.skewed.de/static/doc/demos/inference/inference.html
21https://scikit-learn.org
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Tasks WSI LSCD

metrics ARI SPR ARI SPR

Chinese Whispers (6) .622 ± .130 (6) .768 ± .241 (5) .602 ± .078 (4) .768 ± .241
Correlation Clustering (5) .622 ± .132 (2) .873 ± .110 (3) .666 ± .096 (5) .715 ± .207
WSBM (3) .710 ± .068 (1) .911 ± .156 (4) .613 ± .158 (2) .828 ± .169
Spectral Clustering/s (1) .771 ± .090 (2) .873 ± .141 (1) .715 ± .067 (1) .835 ± .130
Spectral Clustering/c (2) .755 ± .087 (4) .834 ± .077 (2) .702 ± .087 (3) .774 ± .111
Spectral Clustering/e (4) .633 ± .144 (5) .807 ± .202 (6) .426 ± .208 (6) .596 ± .213

Table 7: Comparison of clustering methods: rank and performance metrics. The table
presents the rank (in parentheses) for the cross-validation experiment and correspond-
ing performance metrics (ARI and SPR) for each clustering method. Lower ranks
indicate better performance, and the values are reported as means with standard devi-
ations.

clusterings. Additionally, in cases where multiple clusterings had the same score, we
selected the one with the fewest clusters.22 We refer to Spectral Clustering with the
respective method to choose the number of clusters by “.../s” for Silhouette, “.../c”
for Calinski-Harbasz, and “.../e” for Eigengap.

6 Experiments

In this section, we describe the experiments conducted to evaluate the performance
of our model architecture (see Section 5) utilizing the annotated data described in
Section 3, which spans different time periods and encompasses annotations for 24
words and 826 uses. We design a series of experiments to measure the generalization
capabilities of different systems for the WSI and LSCD tasks. To achieve this, we
employ a cross-validation approach with hyperparameter optimization [74].

Our set of 24 words is partitioned into 5 folds. Subsequently, within each cross-
validation iteration, an exhaustive hyperparameter grid search is conducted. This
encompasses hyperparameters for the WiC model, WUG, and those specific to the
targeted clustering method. The optimal configuration identified in the training folds
is then evaluated in the testing fold. This process yields 5 performance scores (ARI for
WSI and Spearman for LSCD) for each clustering method, and we calculate the mean
and standard deviation from these scores. We separately report results using WSI and
LSCD performance as optimization criterion. This experimental design is motivated
by the objective to unveil the correlation between the WSI and LSCD tasks. Specifi-
cally, it investigates whether the WSI task can effectively function as a proxy for the
LSCD task, and vice versa.

Table 7 provides a summary of the results obtained from our 5-fold cross-validation
experiments. It displays the average test score across folds along with the standard

22We use an adjacency matrix representing sentence similarity, rather than a feature matrix, to calculate
the Silhouette Score and Calinski-Harabasz Score.
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Methods old ARI new ARI

Chinese Whispers .640 ± .170 .578 ± .108
Correlation Clustering .495 ± .060 .596 ± .219
WSBM .495 ± .159 .640 ± .070
Spectral Clustering/s .679 ± .166 .765 ± .040
Spectral Clustering/c .699 ± .105 .721 ± .151
Spectral Clustering/e .659 ± .119 .663 ± .104

Table 8: Comparison of the cross-validation
performance when testing only on the old or the
new portion of the dataset respectively, across
all methods.

deviation. The WiC models used as hyperparameters may vary between folds. Tables
9 and 10 detail which WiC model was selected for each fold. Additionally, the reported
standard deviation quantifies how the metrics vary from one fold to another, depending
on both the hyperparameters selected in each fold and the test subset corresponding
to that fold. For Spectral Clustering, we present the results for each method to choose
the number of clusters separately. The table presents two distinct approaches to the
hyperparameter selection: optimization for WSI (left) and for LSCD (right). For both
approaches, we report also the performance on the other task which we do not directly
optimize for in order to understand how well the performance translates to the other
task. Among the methods evaluated, Spectral Clustering stands out as the most effec-
tive, particularly when utilizing the Silhouette score to select the number of clusters.
This configuration consistently obtains the highest ARI score considering the WSI
task and the highest SPR in the LSCD task.

As we can see in Table 7, WSBM is the most effective model when translating
parameters from WSI to LSCD. Conversely, when applying the optimized parameters
from the LSCD task to address the WSI task, the Spectral Clustering method, specif-
ically using the Silhouette validation method, demonstrates superior performance,
yielding the most favorable results. An additional noteworthy observation is that, with
the exception of Chinese Whispers, all methods consistently yield superior results when
utilizing parameters optimized for the WSI task to address the LSCD task, compared
to using parameters optimized for the LSCD task. We conjecture that this is because
the model selection criterion for LSCD overfits more easily because of the notoriously
small number of annotated examples (words) compared to the WSI task (uses). This
problem affects all existing LSCD datasets [e.g. 19, 32, 38, 75]. Hence, we consider this
finding relevant for the LSCD community in general. It suggests that optimization for
WSI should be preferred over optimization for LSCD in small data scenarios, even if
LSCD is the task of interest.

Table 8 presents the cross-validation results for the old and new dataset partitions
(see Section 3). The WiC models used as hyperparameters may vary between folds.
Additionally, the reported standard deviation quantifies how the metrics vary from
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one fold to another, depending on both the hyperparameters selected in each fold and
the test subset corresponding to that fold. With the exception of Chinese Whispers,
all other methods exhibit a higher ARI for the new partition compared to the old one.
These findings align with the dataset annotations, where inter-annotator agreement
is higher for the new portion of the dataset (see Table 2). They also indicate that our
cleaning procedure described in Section 3, did not completely remove the additional
difficulties introduced by historical language data.

6.1 Results per fold

Tables 9 and 10 display the results of our experiments for each clustering method
across individual test partitions as part of the 5-fold cross-validation. Both tables
share common columns, including “fill-diag” representing the fill diagonal parameter,
“ude” indicating the use of disconnected edges, and “mod-hyp” representing model
hyperparameters (see Section 5). Notably, the “test-SPR” column in Table 9 shows
the best SPR results considering optimized parameters from the WSI task, whereas
the “test-ARI” column in the Table 10 displays the optimal results for the LSCD task,
considering parameters optimized in the LSCD task.

In Table 9, we observe that for Spectral Clustering with Silhouette, the selected
model is the same for four out of five folds. This indicates that the method remains
stable, consistently performing well under the same set of parameters; in contrast, in
Table 10 the method shows more variation. We observe a similar picture for WSBM
showing stability when optimized for WSI, but less for LSCD.

We observe for both tasks that setting the parameter “ude”
(use disconnected edges) for Correlation Clustering and WSBM to True consis-
tently yields superior results. Regarding the distribution parameter (“mod-hyp”) of
the WSBM, it becomes evident that when set to “poisson” it obtains optimal perfor-
mance across all five folds for WSI. For LSCD, the geometric distribution dominates
in four out of five folds. Furthermore, we observe that for the WiC path parameter,
the value “ALL” dominates across all methods for WSI. This pattern, however, is not
consistently observed when the models are optimized for the LSCD task.

7 Conclusions and Future Work

We presented a human-annotated, diachronic-historic use-sense dataset which can be
used for WSI, WSD, WiC, and LSCD. We found that human annotators show consid-
erably lower agreement on the historical portion of our data than on the modern one
(RQ1), which is also reflected in the respective model performance on these portions
(RQ2). We conducted experiments testing the performance of various graph cluster-
ing models on the dataset with WSI and LSCD. The main finding is the dominance
of WSI-based model selection for LSCD. Importantly, attempts at reverse fine-tuning
did not yield comparable effectiveness. This means that WSI optimization can indeed
yield a model performing optimal on LSCD while the opposite is not true on our data
(RQ3). However, we hypothesize that this effect is related to data size and may vanish
with larger data sets.
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Method: Chinese Whispers

quantile WiC-path binarize ude mod-hyp fill-diag dev-ARI test-ARI test-SPR

6 ALL True True w: lin True 0.745 0.683 0.975
6 ALL True True w: log True 0.667 0.809 0.900
6 MCL→RU True True w: log True 0.714 0.637 0.400
5 MCL→RU True True w: log True 0.778 0.403 0.564
6 ALL False True w: lin False 0.670 0.580 1.000

Method: Correlation Clustering

3 ALL False False - True 0.757 0.623 0.975
1 ALL False False - True 0.735 0.746 0.990
3 ALL False False - True 0.765 0.604 0.900
4 MCL→RU True True - True 0.757 0.387 0.700
5 enMCL True True - True 0.729 0.749 0.800

Method: WSBM

0 ALL True True poisson False 0.718 0.679 0.975
0 ALL True True poisson False 0.691 0.781 0.999
0 ALL True True poisson True 0.727 0.679 0.600
5 ALL True True poisson True 0.737 0.615 0.999
0 ALL True True poisson False 0.705 0.794 1.000

Method: Spectral Clustering/s

4 ALL False True - True 0.838 0.753 0.975
4 ALL False True - True 0.818 0.818 0.999
4 ALL False True - True 0.839 0.754 0.700
3 enMCL False True - False 0.811 0.629 0.700
4 ALL False True - True 0.811 0.902 1.000

Method: Spectral Clustering/c

3 enMCL False True - False 0.788 0.838 0.872
4 ALL True True - False 0.794 0.748 0.900
3 enMCL False True - True 0.818 0.598 0.900
3 enMCL False True - False 0.811 0.753 0.700
3 enMCL False True - False 0.791 0.837 0.800

Method: Spectral Clustering/e

5 ALL True True - False 0.680 0.652 0.975
0 ALL True True - True 0.629 0.807 0.900
0 ALL True True - True 0.643 0.738 0.700
0 ALL False True - True 0.711 0.390 0.462
5 ALL False True - True 0.682 0.580 1.000

Table 9: Detailed hyperparameters employed in constructing the WUG and the mod-
els during cross-validation, outlined for each fold and model within the context of the
WSI task. Each row corresponding to a method signifies a distinct fold.

Furthermore, using Spectral Clustering with Silhouette score to choose the number
of clusters yielded top results on both tasks showing surprising stability on WSI.23

We hope that this study pave the way for future research in the LSCD field.
Likewise, our future work will focus on refining and extending the current findings,
aiming for a more comprehensive and nuanced understanding of Word Sense Induction
and Lexical Semantic Change Detection tasks. Also, it will be critical to explore novel

23Upon acceptance, we will release the source code necessary to replicate our experiments.
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Method: Chinese Whispers

quantile WiC-path binarize ude mod-hyp fill-diag dev-SPR test-SPR test-ARI

6 ALL True True w: lin True 0.900 0.975 0.683
8 ALL True True w: log False 0.862 0.900 0.690
6 MCL→ru False True w: top False 0.896 0.400 0.600
6 ALL True True w: top False 0.955 0.564 0.488
5 MCL→ru False True w: log False 0.837 1.000 0.547

Method: Correlation Clustering

4 MCL→ru True True - False 0.928 0.975 0.692
1 ALL False False - True 0.914 0.900 0.793
5 MCL→ru True True - False 0.901 0.700 0.572
5 MCL→ru True True - True 0.934 0.600 0.540
1 ALL False False - True 0.936 0.400 0.735

Method: WSBM

6 ALL True True geometric True 0.926 0.975 0.673
5 ALL True True poisson False 0.892 0.900 0.726
6 ALL True True geometric False 0.939 0.700 0.517
0 enMCL True True geometric True 0.955 0.564 0.356
6 ALL True True geometric True 0.939 1.000 0.794

Method: Spectral Clustering/s

4 ALL False True - True 0.940 0.975 0.753
4 ALL False True - True 0.939 0.999 0.818
3 MCL→ru False True - True 0.973 0.700 0.686
1 enMCL False True - True 0.962 0.700 0.619
2 MCL→es False True - True 0.946 0.800 0.701

Method: Spectral Clustering/c

3 enMCL True True - False 0.928 0.872 0.758
0 ALL True True - True 0.944 0.900 0.807
0 ALL True True - True 0.936 0.700 0.651
4 enMCL False True - True 0.961 0.600 0.737
2 MCL→ru False True - True 0.958 0.800 0.560

Method: Spectral Clustering/e

4 MCL→ru True True - True 0.833 0.516 0.317
4 MCL False True - True 0.840 0.999 0.833
7 enMCL True True - False 0.899 0.600 0.405
0 enMCL True True - True 0.944 0.462 0.299
7 MCL→es False True - False 0.897 0.400 0.278

Table 10: Detailed hyperparameters employed in constructing the WUG and the
models during cross-validation, outlined for each fold and model within the context of
the LSCD task. Each row corresponding to a method signifies a distinct fold.

techniques to enhance the adaptability of models for the LSCD task, ensuring they
can efficiently handle both WSI and LSCD tasks with optimal performance taking
into account the temporal aspects of target words.
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Appendix A Experiments with models based on
substitution

We also considered adding other architectures into our benchmark such as Amrami
and Goldberg [76]. The author’s work uses a model to generate substitutes given a
list of target words, these substitutes are assigned to a set of dynamic clusters that
generate predictions for a test dataset. We use this model to generate a baseline on
our data, but we do not report its results due to its poor performance on our data.
These results may be due to several factors: this method was originally used for data
in English, while our data is in German. Similarly, another factor contributing to the
suboptimal results is the sensitivity of standard clustering algorithms with off-the-shelf
BERT to historical spelling variations, which can also be compounded by grammatical
variations in some words [17].24

Appendix B Annotation Guidelines

Einführung.

Ihre Aufgabe ist es, Wortverwendungen einer Bedeutungsbeschreibung zuzuordnen.
Ihnen werden Sätze wie in (1) vorgelegt, für die Sie die Bedeutung des markierten Ziel-
worts, hier Affentheater, einer Bedeutungsbeschreibung wie in (2a) und (2b) zuweisen
sollen.
(B1) Da ringt selbst Elisa Kirschbaum um ihre Fassung, Meyer übrigens auch um

seine, bittet ihn zu sich, der ganze Ton hier, dieses Affentheater.
(B2) a. Theater mit dressierten Affen

b. übertriebenes, usinniges Getue

Aufgabenstruktur.

Sie bekommen ein ODS-Tabellendokument wie in Tabelle B1 illustriert. Eine Zeile der
Tabelle entspricht einem Satz. Die Spalten entsprechen Bedeutungsbeschreibungen für
das jeweilige Zielwort. Das Zielwort ist in jedem Satz fett markiert. Ihre Aufgabe ist
es, für jeden Satz die Bedeutungsbeschreibung zu markieren, welche am besten die
Bedeutung des Zielworts im jeweiligen Satz beschreibt. Falls keine der Beschreibungen
zutrifft, haben Sie die Möglichkeit, die Spalte “andere” zu markieren. Wenn Sie keine
Entscheidung treffen können, markieren Sie bitte keine der Bedeutungsbeschreibungen
und tragen nur eine Begründung in die Spalte “Kommentar” ein. Bitte wählen Sie
nicht mehr als eine Bedeutungsbeschreibung aus und markieren Sie diese mit einem
“x” in der jeweiligen Spalte.

24Ansell et al. [77] is another state-of-the-art model in the WSI task, we didn’t it test it on our data
because the model is trained on texts in English and it is too expensive to train it for other languages.
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Table B1: Annotationstabelle.

Historische Sprachdaten.

Die Sätze für diese Annotationsaufgabe wurden aus historischen Korpora ausge-
lesen. Da sich Sprache mit der Zeit verändert, kann es sein, dass Worte anders
benutzt werden, als Sie es gewohnt sind. Wenn Sie sich unsicher über die Bedeu-
tung eines Wortes oder einer Konstruktion in einem Satz sind, versuchen Sie sie aus
der Bedeutung des Kontexts zu erschließen. Die Sätze können sehr kurz oder sehr
lang sein und ungrammatisch erscheinen. Außerdem können Worte aufgrund älterer
Orthographie anders geschrieben sein, als Sie es gewohnt sind. Zudem wurden einige
Buchstaben bei der automatischen Texterkennung eingescannter Dokumente falsch
erkannt. Es wurde versucht, die Leserlichkeit durch Normalisierung spezieller Buch-
staben zu moderner Orthographie zu verbessern. Versuchen Sie, diese Umstände zu
ignorieren; konzentrieren Sie sich nur auf die Bedeutung des Zielwortes in seinem Kon-
text. Wenn Sie einen Satz zu fehlerhaft finden, um ihn zu verstehen, die Verwendung
des Zielwortes mehrdeutig ist, oder die beiden Verwendungen des Zielwortes nicht
zusammenpassen (d. h., nicht dasselbe Lemma haben), notieren Sie dies bitte auch in
der Kommentarspalte.

Durchführung.

Während der Annotation der Sätze können Sie immer zu vorherigen Bewertungen
zurückgehen und diese ändern; z. B. falls Sie Ihre Meinung ändern, nachdem Sie mehr
Informationen bekommen haben.

Sie müssen nicht die ganze Datei in einer Sitzung annotieren. Wenn Sie einen
Kommentar hinterlassen wollen, können Sie diesen in das Kommentarfeld eintragen.

Es kann hilfreich sein, die Rechtschreibprüfung zu deaktivieren, um nicht durch
zusätzliche Hervorhebungen gestört zu werden.
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Abschluss.

Bitte stellen Sie sicher, dass Sie nichts in der Datei ändern außer Spaltenbreite,
Schriftgröße, Ihren Bewertungen und Kommentaren. Schicken Sie das annotierte
Dokument an schlecdk@ims.uni-stuttgart.de. Wenn Sie noch Fragen zur Aufgabe
haben, zögern Sie nicht, diese zu stellen.
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