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Abstract: The popularity of mobile devices with GPS capabilities, along with the worldwide1

adoption of social media, have created a rich source of text data combined with spatio-temporal2

information. Text data collected from location-based social networks can be used to gain space-3

time insights into human behavior and provide a view of time and space from the social media lens.4

From a data modeling perspective: text, time, and space have different scales and representation5

approaches; hence it is not trivial to jointly represent them in a unified model. Existing approaches6

do not capture the sequential structure present in texts or the patterns that drive how text is7

generated considering the spatio-temporal context at different levels of granularity. In this work8

we present a neural language model architecture that allows us to represent time and space9

as context for text generation at different granularities. We define the task of modeling text,10

timestamps, and geo-coordinates as a spatio-temporal conditioned language model task. This11

task definition allows us to employ the same evaluation methodology used in language modeling,12

a traditional natural language processing task which considers the sequential structure of texts.13

We conduct experiments over two datasets collected from location-based social networks Twitter14

and Foursquare. Our experimental results show that each dataset has particular patterns for15

language generation under spatio-temporal conditions at different granularities. Also, we present16

qualitative analyses to show how the proposed model can be used to characterize urban places.17

Keywords: spatio-temporal text data; location-based social networks; language models18

1. Introduction19

Social networks play a crucial role nowadays in modern societies. From interests20

and reviews to preferences and political opinions; it is imprinted in our everyday life. So-21

cial networks such as Instagram, Facebook, Twitter, and Foursquare allow users to share22

text data with spatio-temporal information (a timestamp and geo-coordinates). We refer23

to these social networks as location-based social networks (LBSN). Text data generated24

on location-based social networks is a set of records representing ⟨where, when, what⟩,25

in which the where means a location’s latitude-longitude geo-coordinates, the when is a26

timestamp, and the what is the textual content.27

Understanding patterns of spatio-temporal textual data generated on LBSN can help28

us understand human mobility patterns [1,2] or when and where popular social activities29

take place [3–5] in urban environments. In addition, spatio-temporal textual data from30

LBSN has been successfully used to detect real-world events such as earthquakes [6,7]31

or to predict events like civil unrest [8]. A better understanding of this type of data32

could be beneficial in a wide range of scenarios. For instance, the STAPLES Center is a33

multi-purpose arena in Los Angeles, California which holds different humans activities34

like sporting events and concerts. Using "STAPLES Center" to annotate this location35

could fail to reveal the complete purpose of the place; while using data from a LBSN36

could discover spatio-temporal nuances of the human activities that take place on points37

of interest like this.38

One challenge related to modeling this kind of data is its multi-modality. Times-39

tamps, geo-coordinates and textual data exhibit different magnitudes and representa-40

tions schemes which makes it difficult to combine them effectively. Timestamps and41
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geo-coordinates are continuous variables while the text is a sequence of discrete items42

and is usually represented using vector spaces.43

An additional challenge is associated with the individual representation of each44

type of variable. Previous approaches (see Section 2) for modeling how text is generated45

in a spatio-temporal context use a single granularity representation for time or space;46

either using hand-crafted discretizations, automatic models like clustering algorithms,47

or probabilistic models. Spatio-temporal patterns for text data generation should capture48

patterns at different granularities such as hours, weeks, months, and years, for time or49

blocks, neighborhoods and cities, for space. When considering the textual data, previous50

works have modeled the text following a bag-of-words approach (see Section 2), ignoring51

the sequential structure of texts.52

The research question that guides this work is whether modeling time and space53

at different granularities along with the sequential structure of texts can improve the54

modeling of spatio-temporal conditioned text data. The main contributions of our55

current work are to:56

1. propose a spatio-temporal conditioned neural language model architecture that57

represents time and space at different granularities and captures the sequential58

structure of texts. By modeling time and space at different granularities, the59

proposed architecture is adaptable to the specific characteristics of each data source.60

This has proven to be paramount according to our experiments over two LBSN61

datasets.62

2. perform a qualitative analysis where we show visualizations that can help to63

gain insights into the patterns that guide language generation under spatio-64

temporal conditions. By modeling time and space at different granularities we65

can analyze how each granularity level weights in the representation model. For66

this analysis, we conducted experiments with a Transformer-based neural network.67

Attention-based neural networks like the Transformer architecture have the benefit68

of providing insights into the importance of components of the spatio-temporal69

context by visualizing the attention weights.70

1.1. Roadmap71

This document is organized as follows, in section 2 we provide a background of the72

literature relevant to this work. In the first part of the section, we describe applications73

that leverage spatio-temporal textual data from LBSN; after that, we delve into models74

that jointly represent the three variables and highlight existing drawbacks in previous75

approaches that need to be addressed. In section 3, first, we provide a background on76

language modeling before presenting our problem formulation as a spatio-temporal77

conditioned language modeling task. We provide a background of neural networks78

for language modeling and finally describe the proposed neural language model archi-79

tecture. In section 4, we describe our experimental framework. We present the LBSN80

datasets used in our experiments, we describe the evaluation metric and the experiments81

that we conducted to understand time and space modeling at different granularities.82

Finally, in section 5 we discuss our conclusions.83

2. Related work84

In this section, we provide an overview of the work in the literature related to85

this research. First, we describe the principal applications of spatio-temporal text data86

generated on LBSN. Later, we delve into the models for spatio-temporal text data closest87

to our work derived from these applications mentioned before. These works study how88

text is generated in a spatio-temporal context and we focus on how they model time and89

space as a context for language generation.90
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2.1. Applications for spatio-temporal text data91

As stated in previous sections, there are many sources of text data with spatio-92

temporal dimensions. Nevertheless, most of the works in the literature focus on the93

LBSN domain. It is the most abundant data source and easiest to acquire using APIs.94

The main applications that we identify in the literature are activity modeling, mobility95

modeling, event detection and event forecasting. Next, we describe these applications.96

2.1.1. Activity modeling97

Activity modeling studies human activities in urban environments using spatio-98

temporal text data related to human activities. As people share information about99

activities they do in the everyday life, spatio-temporal text data from LBSN provides100

useful information about spatial and temporal patterns of human activities. Unlike static101

analysis of spatial data, spatio-temporal text data can discover the purpose of a visit to a102

point of interest that hosts multiple kinds of events. For instance, the STAPLES Center,103

a multi-purpose arena in Los Angeles, California holds sporting events as basketball104

matches but also can hold others, such as concerts. People may visit the STAPLES Center105

for different purposes. Using "STAPLES Center" to annotate a location record could fail106

to reveal the complete purpose of the location.107

Works in activity modeling focus on place labeling and models that jointly represent108

text, time, and space. Both approaches characterize urban areas using data collected from109

LBSN. Given a set R = {r1, ..., rm} of spatio-temporal text data records, place labeling110

finds labels that best describe PoIs, either static [9] or at different time periods [3]. Works111

that jointly represent text, time, and space for activity modeling allow combining the112

three data types in a unique representation scheme [4][10].113

2.1.2. Mobility modeling114

Mobility modeling using spatio-temporal text data allows us not only to know the115

geometric aspects of mobility human data but also the semantics: i.e. going from point116

A at time t0 to point B at time t1 is not as informative as going from home at time t0117

to work at time t1 or from work at time t2 to a restaurant at time t3. Studying human118

mobility patterns have applications like place prediction/recommendation [2,11] for119

individual users and trajectory pattern mining for mobility understanding in urban areas120

[1,12]. This information can lead to grasping the reasons that motivate people mobility121

behaviors, understanding the nuances of mobility problems in urban environments and122

then take effective actions to solve them.123

2.1.3. Event detection124

Event detection methods applied on streaming of spatio-temporal text data from125

LBSN, allows us to detect; in real-time, geo-localized events from first-hand reporters.126

As defined by Allan et al. [13], an event is something that happens at a specific time and127

place and impacts people’s lives, e.g. protests, disasters, sporting games, concerts. Some128

types of events that are reflected in LBSN and can be detected are earthquakes [6,7,14] or129

traffic congestion [15,16].130

2.1.4. Event forecasting131

Event forecasting methods, unlike event detection, which typically discovers events132

when are occurring, predict the incidence of events in the future. The common approach133

is to use data from LBSN in conjunction with external sources to build prediction models.134

For some events like criminal incidents [17–19] or civil unrests [8,19], predicting the135

exact location with as much time in advance is paramount. A common approach is to136

define features as indicators and train prediction models for spatial regions [17]. For civil137

unrest, the prediction is usually at the city level or smaller administrative regions, while138

for crimes and traffic events the prediction is at a finer grain level like neighborhoods or139
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blocks. The temporal variable is used to identify the changing patterns that indicate the140

occurrence of an event in the future.141

2.2. Models for spatio-temporal text data142

Analyzing the former applications, activity modeling can be considered the primary143

task. It allows to answer ⟨what⟩ happens, ⟨when⟩ it happens and ⟨where⟩ it happens and144

can be considered the basic task. For example spatial and temporal activity patterns145

can be used to define transition points in trajectories for mobility models, spatial and146

temporal activity patterns are used as features for event forecasting models and unusual147

localized bursty activity is used to detect events. Next, we focus on specialized models148

for activity modeling. First, we describe models that detect geographical topics. Then,149

we describe multimodal embedding methods for spatio-temporal text data.150

2.2.1. Spatio-temporal topic modeling151

Spatio-temporal topic modeling discovers topics related to geographical areas [20–152

26]. Mei et al. [20] proposed a generalization of Probabilistic Latent Semantic Indexing153

[27] model, topics can be generated by text or by the combination of timestamp and154

location. Eisenstein et al. [21] proposed a cascading topic modeling. Words are generated155

by a multinomial distribution that is the mean of a latent topic model and a region topic156

model. Regions are latent variables that also generate coordinates. Topics are gener-157

ated by a Dirichlet distribution. Regions are generated by a multinomial distribution158

and coordinates are generated by a bivariate Gaussian distribution. Each region has a159

multinomial distribution over topics and each topic has a multinomial distribution over160

keywords. Wang et al. proposed LATM [22], which is an extension of Latent Dirichlet161

Allocation (LDA) [28], capable of learning the relationships between locations and words.162

In the model, each word has an associated location. For generating words, the model163

produces the word and also the location, in both cases with a multinomial distribution164

depending on a topic that is generated by a Dirichlet distribution. Additionally, Sizov165

[23] developed a model similar to the work of Wang et al. [22]. Rather than using a multi-166

nomial distribution to generate locations, they replace it with two Gaussian distributions167

that generate latitudes and longitudes. Yin et al. [4] studied a generative model where168

there are latent regions that are geographically distributed by a Gaussian. Hong et al. [24]169

use a base language model, a region-dependent language model, and a topic language170

model. Geo-coordinates are discretized into regions using clustering algorithms. Regions171

are generated by a multinomial distribution depending on the user and a global region172

distribution. Geo-coordinates are generated by the regions using multivariate Gaussian173

distributions. Words are generated by topics depending on the global topic distribution,174

the user, and the region. Ahmed et al. [25] developed a hierarchical topic model which175

models both document and region-specific topic distributions and additionally models176

regional variations of topics. Relations between the Gaussian distributed geographical177

regions are modeled by assuming a strict hierarchical relation between regions that is178

learned during inference. Finally, Kling et al. proposed MGTM [26], a model based on179

multi-Dirichlet processes. The authors used a three-level hierarchical Dirichlet process180

with a Fischer distribution for detecting geographical clusters, a Dirichlet-multinomial181

document-topic distribution and a Dirichlet-multinomial topic-word distribution.182

2.2.2. Embedding methods183

Embedding methods are distributed learned representations for discrete vari-184

ables. Learned embedded representations are very popular in natural language pro-185

cessing [29,30] and graph node representation [31]. For spatio-temporal textual data,186

embedded-representations learn a joint representation for the elements of the tuple187

⟨time, location, text⟩.188

Zhang et al. proposed CrossMap [10]. In CrossMap, the first step is to discretize189

timestamps and coordinates using Kernel Density Estimation techniques. After that,190
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CrossMap uses two different strategies to learn the embedded representations: Recon191

and Graph. In Recon, the problem is modeled as a relation reconstruction task between192

the elements of the tuple ⟨time, location, text⟩ while in Graph; the goal is to learn repre-193

sentations such that the structure of a graph built from the tuples ⟨time, location, text⟩ is194

preserved. In [5], Crossmap is extended to learn the embedded representation in a stream.195

The authors propose two strategies based on life-decay learning and constrained learning196

the find the representations from the streaming data. Unlike Crossmap, timestamps and197

geo-coordinates are discretized into hand-crafted spatial windows and temporal cells198

instead of Kernel density Estimation based clustering. Zhang et al. [32] proposed another199

extension to Crossmap, in this case, to learn representations from multiple sources. The200

main dataset is the set of tuples ⟨time, location, text⟩. Each dataset defines a graph and201

the representations are learned to preserve the graph structure. Nodes representing the202

same entity are shared between the main graph and secondary graphs. During training,203

the learning process alternates between learning the embeddings for the main graph204

and the embeddings for the secondary datasets.205

2.2.3. Analysis of models that leverage spatio-temporal text data206

In Table 1, we present a summary of the works discussed in this section. Existing207

approaches are based on topic modeling or embedding methods. Works following208

the topic modeling approach are based on topic models such as Probabilistic Latent209

Semantic Analysis [33] or Latent Dirichlet Allocation [28] and extend the models by210

assigning distributions over locations to topics, or by introducing latent geographical211

regions. Both, topic models and embedding methods assume a bag-of-words approach212

for text modeling, which ignores the sequential structure of texts. When considering213

time and space modeling, each work models timestamps and geo-coordinates at a single214

level of granularity using hand-crafted spatial-cells and temporal-windows or clustering215

algorithms. Only Ahmed et al. [25] models hierarchy, but only for space; to the best of our216

knowledge, there are no studies of how representing time and space at different levels217

of granularity impact the modeling of text generation under spatio-temporal conditions.218

Also, no work models the sequential structure of texts.219

An additional problem about modeling spatio-temporal text data, which is impor-220

tant to mention, is the evaluation framework. Building a reference dataset in this field221

is complex. First, there is a temporal variable involved: this means that data should be222

collected for a long time. Second, data is related to a specific region: this means that223

using models in a new region would require collecting data from that region. We can224

observe (see column Dataset in Table 1) that there is no consensus about what dataset to225

use as a standard to establish fair evaluations between different approaches. For this226

reasons, we decided not to amplify this issue by using a new dataset and we develop227

our experiments using the most recent datasets (see Section 4.1) reported in [5,10,32].228

Also, each work models time and space with different techniques like: clustering,229

probabilistic models or hand-crafted discretizations and use different evaluation metrics230

suited to their proposed model. For example: works that their outcome are classification231

models are evaluated using classification metrics like Accuracy, works that produce232

Probability Distributions are evaluated using Perplexity and works that propose ranking233

models are evaluated using Mean Reciprocal Rank. As in this work we propose a spatio-234

temporal conditioned neural language model, we use as evaluation metric Perplexity, a235

traditional language modeling evaluation metric. Using Perplexity over the generated236

text, because we only look at the text, allows us to disentangled the evaluation metric237

from how time and space are modeled.238

Overall, we can conclude that existing approaches ignore two dimensions of the239

problem:240

1. the sequential structure of language.241

2. a unified model for representing time and space that leverage time and space at242

different granularities as context for language generation.243
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Work Time
Representation

Space
Representation

Text
Representation

Integration Dataset Evaluation
Metric

[20] Days in a week City Multinomial Topic modeling Blogs (2006) -

[21] - User aggrega-
tion + Gaus-
sian

Multinomial Topic modeling Twitter (2010) Accuracy and
Mean Distance

[23] - Two Gaussian Multinomial Topic modeling Flickr (2010) Accuracy

[22] - Multinomial Multinomial Topic modeling News (-) Perplexity

[24] - Clustering
+ Gaussian

Multinomial Topic modeling Twitter (2011) Mean Distance

[25] - Hierarchical
Gaussian

Multinomial Topic modeling Twitter (2011) Accuracy and
Mean Distance

[26] - Fisher
distribution

Multinomial Multi-Dirichlet
process

Flickr (2010) Perplexity

[10] Clustering over
seconds in a day

Clustering Embedding
Multimodal
embedding

Twitter (2014)
Foursquare
(2014)

Mean Recipro-
cal Rank

[5] Hours in a day Equal-sized
grids

Embedding
Online
multimodal
embedding

Twitter (2014)
Foursquare
(2014)

Mean Recipro-
cal Rank

[32] Hours in a day Equal-sized
grids

Embedding Cross-modal
embedding

Twitter (2014)
Foursquare
(2014)

Mean Recipro-
cal Rank

Table 1: Spatio-temporal Text Data Modeling
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3. Proposed Solution244

In this section we describe our proposed solution. First, we show the problem245

formulation which is framed as a language modeling task. After that, we describe246

the proposed model for which we previously briefly overview state-of-the-art neural247

language model architectures. Finally, we show the discretizations of timestamps and248

geo-coordinates as well as the parameters selection.249

3.1. Language Modeling250

Language modeling is defined as the task of assigning a probability to a sequence251

of words w: p(w) = p(w0, w1 . . . wj−1, wj). State-of-the-art models for language mod-252

eling are based on neural networks. Typically, neural network language models are253

constructed and trained as discriminative predictive models that learn to predict a254

probability distribution p(wj/w0, w1 . . . wj−1) for a given word conditioned on the pre-255

vious words in the sequence. These models are trained on a given corpus of docu-256

ments. The probability of a sequence of words p(w0 . . . wj−1, wj) can be estimated with:257

∏
i=j
i=1 p(wi/w0, w1 . . . wi−1).258

Conditioned language modeling is defined as the task of assigning a probability259

to a sequence of words given a context c: p(w/c) = p((w0, w1 . . . wj−1, wj)/c). Then,260

the probability of each word in the sequence is computed as: p(wj/c, w0, w1 . . . wj−1).261

Conditioned language models have applications in multiple natural language processing262

tasks, for example: machine translation (generating text in target language conditioned263

on text in a source language), description of an image conditioned on the image, a264

summary conditioned on a text, an answer conditioned on a question and a document,265

etc. In our case, the context will be a tuple of timestamp and coordinates.266

3.2. Problem Formulation267

Given a collection of records that provide textual descriptions of a geographical268

area at different moments in time; our goal is to create a model capable of representing269

this multi-modal data. Following the traditional language modeling task formulation;270

we require the resulting model to assign a probability to a text given the timestamp and271

coordinates associated with that text.272

More formally, let be H = {r1, ..., rn} a set of spatio-temporal annotated text records273

(e.g., a tweet). Each ri is a tuple ⟨ti, li, ei⟩, where: ti is the timestamp associated with ri, li274

is a two-dimensional vector representing the location corresponding to ri, and ei denotes275

the text in ri. Given that ei is a sequence of words w0 . . . wn, assigning a probability to276

w0 . . . wn given ⟨ti, li⟩ can be written as p((w0, w1 . . . , wn)/⟨ti, li⟩), which is an instance277

of the conditioned language modeling task presented in Section 3.1.278

3.3. Neural Networks for Language Modeling279

Because we propose a neural network architecture to model text generation under280

spatio-temporal conditions, we consider it is important to provide a background of281

the state-of-the-art neural network architectures for language modeling. We describe282

the two neural network architectures that have shown state-of-the-art results across283

many natural language processing tasks [34]: recurrent neural networks (RNN) and284

Transformer-based self-attention models.285

Recurrent neural network [35] are a family of neural networks architectures that286

capture temporal dynamic behavior. RNN have been successfully applied to natural287

language processing problems like speech recognition [36] and machine translation288

[37–39], among others. In the case of spatio-temporal data, they have been mostly used289

for mobility modeling [40–43]. In the basic architecture for a RNN, there is a vector h290

that represents the sequence. At each timestep t, the model takes as input ht−1 and the291

t-th element of the sequence xt; then computes ht. For language modeling, at each time292

step t, ht is used as input to a feed-forward network that predicts the next token xt+1.293

The most popular architectures of RNN are the Long-Short Term Memory (LSTM) [44]294
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Figure 1. Model’s Architecture.

and the Gated Recurrent Unit (GRU) [45]. Both variants introduce mechanisms that295

control the information flow between the hidden states representing the sequence.296

Self-attention architectures have revolutionized the natural language processing297

(NLP) field with several works that followed this approach. The Transformer [46] was298

initially proposed for a language translation task. Later, pre-trained language models299

[47–49], following the self-attention model proposed by the Transformer, have improved300

the state-of-the-art for many NLP tasks. This approach uses positional encoding to301

leverage word positions and several layers of multi-head self-attention. The self-attention302

architecture removes the recurrent component of RNNs that limits parallelization. This303

allows faster training with superior quality when compared to previous models based304

on recurrent neural networks.305

3.4. Model Description306

Our proposed architecture consists of an end-to-end neural network for encoding307

spatial and temporal contexts and decoding/generating text. Our design is targeted308

to model the spatio-temporal context at different granularities and to make the decod-309

ing/generating component agnostic to how the encoding of the spatial and temporal310

contexts are instantiated.311

Figure 1 shows the model’s architecture. In order to feed our model with spatio-312

temporal textual data, some pre-processing steps are required, first: text is tokenized,313

timestamps are discretized into temporal-windows and geo-coordinates are discretized314

into spatial-cells (Equation 1). After that, discretized timestamps and discretized geo-315

coordinates are passed through embedding layers (Equation 2). The embedding layer316

projects words, temporal-windows and spatial-cells into a dense representation. Each317

item is embedded using a look-up table and there is a look-up table for each type of item:318

temporal-windows, spatial-cells and words. Each item is associated with an integer that is319

used as an index in the correspondent look-up table.320

After the discretization step, the next step is building the spatio-temporal context321

(Equation 3). Each timestamp can be discretized into n temporal-windows and each322

coordinate can be discretized into p spatial-cells. The n + p temporal-windows and323
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spatial-cells represent the spatio-temporal context. Afterward, the context is passed324

through an Encoder layer that results in a context-representation tensor (EmbContext).325

This context-representation tensor is of invariant/fixed dimensions (<1,d> where d is the326

representation dimension) no matter how the context is selected. The EmbContext tensor327

is concatenated as the first element to the sequence of word embeddings (Equation 4),328

this sequence [EmbContext, EmbWords]; is passed through a Decoder that represents329

the language model. Finally, we compute the loss to minimize using as loss function330

the cross-entropy between the predicted sequence of words and the observed sequence331

of words in the training examples (Equation 5). This is the general architecture that332

we propose. The main building blocks of our architecture (Encoder, Decoder) can be333

implemented using different approaches, such as recurrent neural networks or self-334

attention transformer blocks. We experiment with them in Section 4.335

A salient property of our architecture is that it allows for representing time and space336

at different levels of granularities. This is achieved by modeling the spatio-temporal337

context as a sequence of discrete tokens that represent the particular semantics of each338

context type. For example, we could represent the temporal context by the hour of the339

day (0-23), day of the week (Sunday to Monday), week of the month, and month of the340

year (January to December) and the spatial context by block, neighborhood, district, etc.341

IDTime1, . . . , IDTimen = DiscTime(⟨timestamp⟩)
IDPlace1, . . . , IDPlacep = DiscCoordinates(⟨latitude, longitude⟩)

IDWord1, . . . , IDWords = TextIndexer(⟨text⟩)
(1)

EmbTime1,d
1 , . . . , EmbTime1,d

n = IDTime1, . . . , IDTimen

EmbPlace1,d
1 , . . . , EmbPlace1,d

p = IDPlace1, . . . , IDPlacep

EmbWord1,d
1 , . . . , EmbWord1,d

p = IDWord1, . . . , IDWords

(2)

SeqContextn+p,d = [EmbTime1,d
1 , . . . , EmbTime1,d

n , EmbPlace1,d
1 , . . . , EmbPlace1,d

p ]

EmbContext1,d = Encoder(SeqContextn+p,d)
(3)

SeqPredn+p,d = [EmbContext1,d, EmbWord1,d
1 , . . . , EmbWord1,d

p ]

PredictedWordseqlen,vocabsize = Decoder(SeqContextn+p,d)
(4)

Loss = CrossEntropy(PredictedWordseqlen,vocabsize, CorrectWordseqlen,vocabsize) (5)

3.5. Timestamps and geo-coordinates discretization342

To discretize geo-coordinates and timestamps we use equal-size squared cells in343

the case of the geo-coordinates and hand-crafted temporal-windows in the case of the344

timestamps. For timestamp discretizations, we use human semantic arrangements of345

time, in particular: the hour of the day (0-23), day of the week (Sunday to Monday), week346

of the month (first week to the fifth week) and month of the year (January to December).347

Figure 2 shows a hierarchy describing these discretizations. For spatial discretization,348

we use equal-size spatial-cells using the spatial-coordinates as metric space. Figure 3349

shows a hierarchy describing the squared-cell discretizations.350

It is important to remark that our approach of representing contexts as discrete351

sequences allows for working at different levels of granularity. For example, a coarse352

representation could represent time by a single token corresponding to the month, where353

a more fine-grained approach could encode time as a sequence containing month, day,354

hour, etc. We argue that this is a core property of our architecture as it allows us to adapt355

the spatio-temporal context representation depending on the application. For example,356

for events related to daily activities (e.g., going to work, having lunch) granularities at357

the hour level should be more efficient. On the other hand, for events related to seasonal358

events (e.g., Christmas, Holidays) month-level granularities should work better.359
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Figure 2. Hierarchy of timestamps discretization.

3.6. Parameters360

In all our experiments we use 128-dimensional embedding representation for361

timestamp, location and words. The models are trained using mini-batch gradient de-362

scent with Adam optimizer [50]. We use 128 examples as batch-size and early-stopping363

on the validation dataset. We develop experiments with multi-layer GRU recurrent364

neural networks [45] and Transformer-based neural networks for the Encoder/ Decoder365

components of our proposed architecture. The GRU recurrent neural networks use a366

two-layer GRU with a hidden layer size of 128. While the Transformer-based neural367

networks are used in all cases also with two self-attention layers, four heads and 128368

vector size for queries, keys and values (see [51] for additional details).369

4. Experiments370

In this section, we describe our experimental framework. The goal is to get a371

better understanding of the patterns that guide language generation in spatio-temporal372

contexts. In particular, looking at the data defined from tuples ⟨time, location, text⟩,373

the model will be evaluated in a traditional language modeling task (i.e. using the374

Perplexity metric). First, we describe the datasets. After that, we present the evaluation375

methodology, then we show the experimental results and finally, we showcase studies376

of real-world applications of the studied models.377

4.1. Datasets378

We conduct experiments using two LBSN datasets: one from Twitter and other379

from Foursquare, each dataset is described next:380

• Los Angeles (‘LA-TW’): This dataset [10] is a set of geo-tagged tweets from Los381

Angeles, USA. It is 1,584,307 geo-tagged tweets from 2014.08.01 to 2014.11.30 (see382

Table 2).383

• New York (‘NY-FS’): This dataset was also first reported on [10]. It consists of384

Foursquare check-ins reported on Twitter by users in the city of New York, USA.385

The data contains 479,297 records check-ins from 2010.02.25 to 2012.08.16 (see Table386

2).387
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Table 2: Datasets

LA-TW NY-FS

Records 1,188,405 479,297
City Los Angeles New York
Start Date 2014.08.01 2010.02.25
End Date 2014.11.30 2012.08.16

4.2. Evaluation methodology388

For each experiment we split the dataset in training-validation-test, keeping 10% of389

each dataset as test, 10% for validation, and 80% for training. Given that the input to the390

models is a set of tuples in the form: ⟨timestamp, coordinates, text⟩, for each experiment391

we set the vocabulary to the 12,288 most common words in the training set. The number392

of spatial-cells and temporal-windows is variable depending on the experiment. We393

filter out tuples where the number of words in the vocabulary is ten or less and reduce394

all URLs to the token ’http’.395

Evaluation of language modeling is usually done using Perplexity [52]. Perplexity396

measures how well a language model predicts a test sample and captures how many bits397

are needed on average per word to represent the test sample. It is important to note that398

in Perplexity, the lower the score, the better the model. Perplexity, for a test set where all399

sentences are arranged one after other in a sequence of words w1, . . . , wT of length T, is400

defined as:401

Perplexity = 2−
1
T log2 p(w1,...,wT). (6)

4.3. Discretization exploration402

In order to better understand the spatio-temporal discretizations, in Figures 4 and403

5 we show histograms of the timestamps and geo-coordinates discretizations for both404

datasets NY-FS and TW-LA. We show the 24 hours of the day (0-23) and the discretization405

of geo-coordinates by (0.001x0.001) spatial cells.406

We can observe that, for both datasets, early morning hours are the least frequent,407

starting to increase in the afternoon until the night hours. In total there are 19,157 spatial408
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Figure 4. Histograms of distribution for the NY-FS dataset.

cells for the NY-FS dataset and 84,693 for the LA-TW dataset. In the case of the NY-FS409

dataset around 82% (15,796) of the cells have less than the average number of messages410

per cell (dotted line in Figure 4), while for the LA-TW the distribution is similar, around411

83% (70,529) of the cells have less than the average number of messages per cell (dotted412

line in Figure 5). These similarities in the patterns observed in the histograms indicate413

that even when these datasets were collected from different cities and in different time414

windows, there are patterns for text generation under spatio-temporal contexts that415

prevail independently of the place and time window in which the data was collected.416

4.4. Encoder-Decoder analysis417

In our first set of experiments, we evaluate different options for the spatio-temporal418

context representation component (Encoder) and the language modeling component419

(Decoder) (see Section 3.4). In each case, we test two variants. For the Encoder we test 1)420

projecting the embeddings output of the embedding layer with a fully-connected layer421

on top and 2) the Self-Attention Encoder representation proposed in [51] (without the422

positional encoding since the order is irrelevant in the sequence of tokens representing423

the spatio-temporal context) also with a fully-connected layer on top. For the Decoder424

we test: 1) a two layers GRU recurrent neural network [45] and 2) a transformer-based425

two layer Decoder representation proposed in [51].426

In Table 3 we show the results for Foursquare and in Table 4 for Twitter. For427

both datasets, we test two different options for times and places in the Encoder: all428

times (alltimes), all places (allplaces), and all times-places (all). We can see that for429

both datasets and for each option of times and places; using only the embeddings in430

the Encoder performed better than using the Self-Attention component. While for the431

Decoder, the Self-Attention component performed equally better than the GRU in the432

same analysis. The combination Encoder(Embeddings)-Decoder(Self-Attention) got the433

best results in all cases. Our interpretation of these results is that the Self-Attention434

mechanism in the spatio-temporal context introduces noise between the units in the435

spatio-temporal context; while using only the Embeddings keeps the representations436

of the spatio-temporal units independent from each other. In the case of the Decoder437

there is no such issue what we are modeling is the sequential structure of the text that438

can be captured with the Self-Attention Decoder. In the next section, where we analyze439

different granularities for time and space, we use this setting of Encoder(Embeddings)440

and Decoder(Self-Attention) as evaluation setting.441
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Figure 5. Histograms of distribution for the LA-TW dataset.

4.5. Spatio-temporal granularities analysis442

In this section, we study how modeling time and space at different granularities443

influences the spatio-temporal conditioned language models. In Table 5 we show the444

results for the Twitter dataset from Los Angeles. We can see that in every case including445

a spatial context or a temporal context improved the Perplexity results. Also, the446

improvements for temporal contexts were marginal when compared to a language447

model that ignores the spatio-temporal context (first row in the table). The spatial448

contexts show notable improvements in all cases, more than the temporal contexts; the449

larger the spatial-cell, the best the results.450

As a complement to the results in Table 5, in Table 6 we show the results with bigger451

spatial-cells. We can see that instead of getting better results, Perplexity gets worst, with452

indicates that the sweet point to get the best results is with spatial-cells between 0.008453

and 0.016.454

In Table 7 we show the results for the Foursquare dataset from New York. The Per-455

plexities for this dataset are lower than the Perplexities for the Twitter dataset from Los456

Angeles. This is due to that most of the Foursquare reports are generic texts generation457

suggested by the application. These texts only differ in most of the cases on the place that458

is checked-in, while the Twitter dataset is mostly free texts. About the spatio-temporal459

modeling, we observe similar results to the Twitter dataset; in all cases, including the460

spatio-temporal context improves the Perplexity. With the temporal contexts producing461

marginal improvements while the spatial contexts show the biggest margin in improve-462

ments. Contrary to the results over the Twitter dataset; with this dataset, smaller cell-size463

produced better results than the wider ones. We consider that this is due to texts being464

correlated to places of interest where people report activities in Foursquare (restaurants465

and small businesses) with a fine granularity.466

As a complement to the results in Table 7, in Table 8 we show the results with467

smaller spatial-cells. We can see that the results improve, Perplexity gets lower. We468

could not continue the decrease the spatial-cell size because of resources restriction.469

Also, in order to find a point where the Perplexity begins to deteriorate, we need to test470

spatial-cells smaller than the regular size of popular places where activities are reported471

on Foursquare.472
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Table 3: Perplexity results for the Foursquare dataset from New York. Testing only
Embeddings and Self-Attention for the Encoder component and GRU-RNN or Self-
Attention for the Decoder. In the Context column: h means hour, d means day in the
week, w means week in the month, and m means month in the year. Also: p1, p2, p4,
and p8 mean squared cells of side: 0.001, 0.002, 0.004, 0.008.

Context Encoder Decoder Dataset Perplexity

[] - GRU NY-FS 10.49
[] - Self-Attn NY-FS 9.13
[hdwm]-alltimes Embeddings GRU NY-FS 10.02
[hdwm]-alltimes Embeddings Self-Attn NY-FS 9.00
[hdwm]-alltimes Self-Attn GRU NY-FS 10.14
[hdwm]-alltimes Self-Attn Self-Attn NY-FS 47.15
[p1p2p4p8]-allplaces Embeddings GRU NY-FS 6.51
[p1p2p4p8]-allplaces Embeddings Self-Attn NY-FS 5.45
[p1p2p4p8]-allplaces Self-Attn GRU NY-FS 10.13
[p1p2p4p8]-allplaces Self-Attn Self-Attn NY-FS 36.62
[hdwm p1p2p4p8]-all Embeddings GRU NY-FS 6.38
[hdwm p1p2p4p8]-all Embeddings Self-Attn NY-FS 5.34
[hdwm p1p2p4p8]-all Self-Attn GRU NY-FS 10.14
[hdwm p1p2p4p8]-all Self-Attn Self-Attn NY-FS 34.93

4.6. Qualitative analysis473

In this section, we perform a qualitative analysis of language generation for the474

studied models. First, we show examples of texts generated after training a spatio-475

temporal conditioned language model given a spatio-temporal context. Finally, we476

show Figures 6, 7, and 8 where we can see attention weights that the text generation477

component gives to the elements in the spatio-temporal context. Attention weights can478

be particularly useful for the GIS community in our model since they relate words to479

spatial and temporal contexts and offer interpretability. We can see the direct relationship480

between individual words and different granularities of representation.481

In Table 9 we show examples of a language model trained with the Twitter dataset482

from Los Angeles with all granularities of time and space discretization (last row in483

Table 5). We selected two hubs for urban activities in Los Angeles: the Staples Center484

and Venice Beach. For the Staples Center, we selected a date of concert of the British485

band Arctic Monkeys and a date of a basketball game between the Los Angeles Lakers486

and the Los Angeles Clippers. We can observe that even for the same location, the texts487

generated can be associated with different events. For the examples using Venice Beach488

as context, we can see that the generated texts are associated with beach activities.489

This type of analysis shows the utility of the spatio-temporal conditioned language490

models trained over LBSN datasets to characterize human activities in urban areas.491

Figures 6, 7, and 8 show examples given the Staples Center as context. In Figure 6492

we show a date from a Los Angeles Lakers game. We can see that the word staples is493

associated with the finer granularity of geo-coordinates discretization while the word494

night plays attention to the timestamp discretization as the hour of the day. In Figure 6495

we show a date from a Katy Perry concert. We can see how the words katyperry and at the496

staples center are associated with the finest granularities of geo-coordinates discretization;497

while the word tonight, a more general term, is associated with the coarsest granularity.498

In Figure 8 we show an example with the geo-coordinates of Venice Beach as spatial499

context. We can observe how the word venice is associated with the finest level of spatial500

discretization; while the word beach is associated with the second finest granularity, beach501

is a more general term than venice, but also is only associated with coastal regions in a502

city.503
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Table 4: Perplexity results for the Twitter dataset from Los Angeles. Testing only Embed-
dings and Self-Attention for the Encoder component and GRU-RNN or Self-Attention
for the Decoder. In the Context column: h means hour, d means day in the week, w
means week in the month, and m means month in the year. Also: p1, p2, p4, and p8
mean squared cells of side: 0.001, 0.002, 0.004, 0.008.

Context Encoder Decoder Dataset Perplexity

[] - GRU LA-TW 63.03
[] - Self-Attn LA-TW 57.35
[hdwm]-alltimes Embeddings GRU LA-TW 61.90
[hdwm]-alltimes Embeddings Self-Attn LA-TW 56.67
[hdwm]-alltimes Self-Attn GRU LA-TW 63.02
[hdwm]-alltimes Self-Attn Self-Attn LA-TW 193.77
[p1p2p4p8]-allplaces Embeddings GRU LA-TW 61.13
[p1p2p4p8]-allplaces Embeddings Self-Attn LA-TW 54.30
[p1p2p4p8]-allplaces Self-Attn GRU LA-TW 62.42
[p1p2p4p8]-allplaces Self-Attn Self-Attn LA-TW 161.14
[hdwm p1p2p4p8]-all Embeddings GRU LA-TW 58.88
[hdwm p1p2p4p8]-all Embeddings Self-Attn LA-TW 53.85
[hdwm p1p2p4p8]-all Self-Attn GRU LA-TW 63.06
[hdwm p1p2p4p8]-all Self-Attn Self-Attn LA-TW 72.80

Table 5: Perplexity results for the Twitter dataset from Los Angeles. In this table we
show the results using squared-cells as spatial discretizations.

Context Cells Dataset Perplexity

[] - LA-TW 57.35
[h]-hour 24 LA-TW 57.07
[d]-day 7 LA-TW 57.17
[w]-week 5 LA-TW 57.13
[m]-month 12 LA-TW 56.95
[hdwm]-alltimes 48 LA-TW 56.67
[p1]-0.001 77,065 LA-TW 54.65
[p2]-0.002 34,284 LA-TW 52.91
[p4]-0.004 11,359 LA-TW 51.45
[p8]-0.008 3,283 LA-TW 51.30
[p1p2p4p8]-allplaces 125,992 LA-TW 54.30
[hdwm p1p2p4p8]-all 126,036 LA-TW 53.85

The above examples illustrate the potential of our model for spatio-temporal analy-504

ses. On the one hand, we demonstrate that our language models are able to generate505

sentences that efficiently and coherently describe a spatio-temporal context. This can506

be especially useful for researchers trying to describe or summarize an event using507

natural language from spatio-temporal contexts. Moreover, our attention weights pro-508

vide an interpretable relationship between text, space, and time. To the best of our509

knowledge, this is the first work to use an attention mechanism for this purpose. These510

interpretations are valuable, as they provide insights into how space and time influence511

what people say (whether on social networks or any other data source of this nature).512

Although neural networks are known to be difficult to interpret, attention weights are513

a well-known example of an interpretable component that has been widely used in514

machine translation, video captioning, among others. We hope that the results presented515

here will increase interest in the use of this mechanism in spatio-temporal domains.516



Version February 15, 2022 submitted to ISPRS Int. J. Geo-Inf. 16 of 21

Figure 6. Example sentence attention to the spatio-temporal context. Yellow means more attention
while blue means less attention.

Figure 7. Example sentence attention to the spatio-temporal context. Yellow means more attention
while blue means less attention.

Figure 8. Example sentence attention to the spatio-temporal context. Yellow means more attention
while blue means less attention.
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Table 6: Perplexity results for the Twitter dataset from Los Angeles. In this table we
show the results using squared-cells as spatial discretizations.

Context Cells Dataset Perplexity

[] - LA-TW 57.35
[p]-0.016 1,253 LA-TW 52.39
[p]-0.024 460 LA-TW 52.81
[p]-0.032 197 LA-TW 53.32

Table 7: Perplexity results for the Foursquare dataset from New York. In this table we
show the results using squared-cells as spatial discretizations.

Context Cells Dataset Perplexity

[] - NY-FS 9.13
[h]-hour 24 NY-FS 8.97
[d]-day 7 NY-FS 9.10
[w]-week 5 NY-FS 9.21
[m]-month 12 NY-FS 9.09
[hdwm]-alltimes 48 NY-FS 9.00
[p1]-0.001 17,929 NY-FS 5.40
[p2]-0.002 11,260 NY-FS 5.74
[p4]-0.004 6,060 NY-FS 6.10
[p8]-0.008 3,283 NY-FS 6.63
[p1p2p4p8]-allplaces 38,532 NY-FS 5.45
[hdwm p1p2p4p8]-all 38,580 NY-FS 5.34

5. Conclusions517

In this work, we studied the problem of modeling spatio-temporal annotated textual518

data. We studied how different granularities of time and space influence spatio-temporal519

conditioned language generation on location-based social networks. We proposed a520

neural language model architecture adaptable to different granularities of time and space.521

A remarkable result of our experiments over two datasets from social networks Twitter522

(Los Angeles) and Foursquare (New York) is that each dataset has its own optimal523

granularity setting for spatio-temporal language generation. Since our proposed archi-524

tecture is adaptable to modeling time and space at different granularities, it is capable of525

capturing patterns according to each dataset. These results directly answer our research526

question by empirically demonstrating that an appropriate adjustment of temporal and527

spatial granularities can benefit spatio-temporal language modeling/generation. On528

our qualitative evaluations, first, we show how the proposed model can be used to529

summarize activities in urban environments with natural language generation. This530

application highlights the importance of modeling the sequential structure of texts in531

order to generate coherent descriptions for spatio-temporal contexts. Secondly, we show532

how words with distinct semantics are linked to spatial cells and temporal windows533

related to their semantics.534

We foresee valuable future research opportunities by working with more recent535

datasets and with the use of handcrafted discretizations. We chose to conduct our536

experiments with these datasets in order to keep the evaluation process consistent with537

previous works. For the timestamp and geo-coordinates discretizations, we would like538

to avoid the use of hard delimitations between cells as this can lead to times and places539

that may be close to each other being assigned to different cells.540
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Table 8: Perplexity results for the Foursquare dataset from New York. In this table we
show the results using squared-cells as spatial discretizations.

Context Cells Dataset Perplexity

[] - NY-FS 8.31
[p]-0.00075 21250 NY-FS 5.33
[p]-0.00050 26431 NY-FS 5.22
[p]-0.00025 35091 NY-FS 5.07
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Table 9: Examples of text generation after training a spatio-temporal conditioned lan-
guage model with the dataset of Twitter from Los Angeles. This Table show results for
two points of interest: the Staples Center and Venice Beach. For the Staples Center we
selected a date of a concert and a date of a basketball game.

Context Text Generated

(Staples Center) (34.043; -118.267) (Con-
cert Date) ’2014/08/07 22:00:00’

[’<START>’, ’taking’, ’a’, ’break’, ’from’,
’the’, ’arctic’, ’monkeys’, ’concert’, ’and’,
’i’, ’love’, ’the’, ’place’, ’if’, ’you’, ’are’,
’here’, ’#staples’, ’staplescenter’, ’http’,
’<END>’
[’<START>’, ’during’, ’the’, ’night’,
’#arcticmonkeys’, ’http’, ’<END>’]
[’<START>’, ’arctic’, ’monkeys’, ’an-
them’, ’with’, ’my’, ’mom’, ’at’, ’staples’,
’center’, ’http’, ’<END>’]

(Staples Center) (34.043; lon = -118.267)
(Game Date) ’2014/10/31 22:00:00’

[’<START>’, ’just’, ’posted’, ’a’, ’photo’,
’105’, ’east’, ’los’, ’angeles’, ’clippers’,
’game’, ’http’, ’<END>’]
[’<START>’, ’#lakers’, ’#golakers’, ’los’,
’angeles’, ’lakers’, ’surprise’, ’summer’,
’-’, ’great’, ’job’, ’-’, ’lakers’, ’nation’,
’http’, ’#sportsroadhouse’, ’<END>’]
[’<START>’, ’who’, ’wants’, ’to’, ’go’,
’to’, ’the’, ’lakings’, ’game’, ’lmao’,
’<END>’]

(Venice Beach) (33.985; -118.472) (Date)
’2014/08/24 13:50:00’

[’<START>’, ’touched’, ’down’, ’venice’,
’beach’, ’#venice’, ’#venicebeach’, ’http’,
’<END>’]
[’<START>’, ’venice’, ’beach’, ’cali’,
’#nofilter’, ’#venice’, ’#venicebeach’, ’is’,
’rolling’, ’great’, ’<END>’]
[’<START>’, ’who’, ’wants’, ’to’, ’go’,
’to’, ’venice’, ’beach’, ’shot’, ’on’, ’the’,
’beach’, ’<END>’]
[’<START>’, ’venice’, ’beach’, ’#venice-
beach’, ’#california’, ’#travel’, ’venice’,
’beach’, ’ca’, ’http’, ’<END>’]
[’<START>’, ’#longbeach’, ’#venice-
beach’, ’#venice’, ’#beach’, ’#sunset’,
’#venice’, ’#venicebeach’, ’#losangeles’,
’#california’, ’http’, ’<END>’]
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