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Abstract. In this paper, we present a comprehensive comparison
between specialized Lexical Semantic Change Detection (LSCD)
models and Large Language Models (LLMs) for the LSCD task. In
addition to comparing models, we also investigate the role of auto-
matic prompt selection for improving LLM performance. We eval-
uate three approaches: Average Pairwise Distance (APD), Word-in-
Context (WiC), and Word Sense Induction (WSI). Using Spearman
correlation as the evaluation metric, we assess the performance of
Mixtral, Llama 3.1, Llama 3.3, and specialized LSCD models across
English and Spanish datasets. Our results show that by using prompt
optimization and LLMs, we achieve state-of-the-art performance for
the English dataset and outperform specialized LSCD models at the
annotation level in the same dataset. For Spanish, specialized mod-
els outperform LLMs across all three approaches—WiC, APD, and
WSI—indicating that specialized LSCD models are still more effec-
tive for semantic change detection in Spanish.

1 Introduction

Lexical Semantic Change Detection (LSCD) is a task that investi-
gates the evolution of word meanings over time through two primary
subtasks: (i) binary classification, which aims to determine whether a
word has changed its meaning due to the acquisition or loss of senses,
and (ii) the ranking task, which seeks to assess the degree of Lexical
Semantic Change (LSC) for a set of target words by comparing their
sense frequency distributions in two different time periods [33, 42].
In this research, we focus exclusively on the ranking task.

Over time, LSCD has benefited from the development of progres-
sively more advanced methods to capture meaning variation. Early
approaches relied on counting-based techniques and static word em-
beddings [16, 38, 37], but these were soon surpassed by contextu-
alized models [25], which enabled more nuanced representations of
word usage in context. Among these, models trained on the Word-
in-Context (WiC) task have proven particularly effective for LSCD,
since both tasks involve determining whether a pair of word us-
ages share the same meaning. The key difference lies in LSCD’s di-
achronic nature, where usage comparisons span across different time
periods.

Notably, DeepMistake [2] and XL-LEXEME [4] have demon-
strated state-of-the-art performance on several LSCD datasets. Deep-
Mistake achieved leading results in the Russian [15] and Spanish [42]
shared tasks, while XL-LEXEME outperformed previous methods
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on English, Swedish, and German datasets. These models leverage
the close relationship between the LSCD and WiC tasks to learn ef-
fective contextualized representations for semantic change.

More recently, Large Language Models (LLMs) such as GPT-3
[3] have emerged as general-purpose tools capable of strong perfor-
mance across a wide variety of Natural Language Processing (NLP)
tasks [43, 21]. These models are trained on massive text corpora and
can generate high-quality responses from natural language prompts
alone, without task-specific fine-tuning. Despite their success, their
applicability to LSCD—especially for the ranking task—has not
been applied widely.

Despite the widespread success of LLMs across various NLP
tasks, their performance has been shown to be highly sensitive to
the choice of prompt [17, 45]. This sensitivity highlights a key lim-
itation: crafting effective prompts often requires substantial human
expertise and manual effort. Previous studies have shown that opti-
mized prompts can significantly enhance model performance com-
pared to unrefined or manually designed prompts, yielding improve-
ments in tasks such as classification, question answering, and others
[44,7, 6].

In this paper, we aim to compare specialized LSCD models with
general-purpose LLMs for the LSCD task. This comparison is mo-
tivated by the practicality of LLMs: (i) they can be applied without
fine-tuning on downstream tasks, and (ii) given the promising out-
comes reported across several researches [43, 21]. In addition to the
model comparison, we also explore whether automatic prompt se-
lection can enhance the semantic proximity judgments produced by
LLMs and check if those models can outperform much smaller and
faster specialized models.

To achieve our goals, we propose to answer the following research
questions:

e RQ1. Can automatically optimized prompts yield better results for
the LSCD task than manually crafted prompts designed through
prompt engineering?

e RQ2. Can LLMs solve the Graded Change LSCD task well? Can
these results surpass the WiC models reported as state-of-the-art?

e RQ3. Can LLMs outperform state-of-the-art LSCD models at the
annotation level?

2 Related work

Graded Change Ranking LSCD is defined as follows [33, 42]:



Given a set of target words and a set of uses U; and U for each of
them, the task is to rank the target word according to their degree
of Lexical Semantic Change between U; and Us.

The gold graded change scores of each word is computed as the
Jensen-Shannon distance (JSD) of the sense frequency distributions
for two time periods, thus generating a list of words sorted by the
degree of semantic change [33, 42, 35]. Then, Spearman correlation
[36] is the metric used between the gold scores and the predicted
word scores.

LLMs + LSCD Wang and Choi [40] demonstrate that the use of
LLMs, specifically GPT-4 [1], yields superior results compared to
BERT [5] and traditional methods, including statistical approaches
and static embedding techniques [20], for detecting semantic change.
The authors employ an experimental setup based on the TempoWiC
dataset [18], which involves two tasks: instance-level meaning shift
detection and corpus-level lexical semantic change (LSC) detection.
In the first task, they utilize a binary classification approach to de-
termine whether a target word has changed its meaning within the
entire corpus. The second task involves classifying whether a target
word retains similar meanings across sentence pairs from two dif-
ferent time periods. Predictions from the LLMs are generated using
various prompts. Ultimately, the authors demonstrate that LLMs out-
perform the other methods in both tasks.

LLMs + WiC In a similar vein, Periti et al. [27] present a series of
experiments comparing the performance of the BERT model [5] with
that of ChatGPT, utilizing both the web interface and the foundation
model via the API. Rather than employing LSCD datasets, the au-
thors evaluate ChatGPT’s performance on the WiC task [28], given
its relevance to LSCD [2, 4].

To achieve this, they utilize two datasets: TempoWiC [18] and
DWUG EN [33].! TempoWiC is employed to evaluate changes in
meaning over a short time span, while DWUG EN assesses the
model’s ability to detect semantic change in a long time span. Pre-
dictions from the LLMs are generated using various prompts. The
results indicate that BERT outperforms the LLMs in this evaluation.
Ultimately, the authors conclude that ChatGPT faces challenges in
detecting semantic change, both in diachronic contexts and over short
time periods. These results are contradictory to the studies of Wang
and Choi [40]; however, the experimental setups in both cases differ
significantly.

Yadav et al. [41] find that automating the annotation process by
reusing human-tailored instructions is a major challenge. To substan-
tiate their claims, they use the DWUG EN dataset [34] comprising
46,000 pairs of word usages annotated following a 4-point semantic
relatedness scale: 1 (unrelated meanings), 2 (distantly related mean-
ings), 3 (closely related meanings), and 4 (identical meanings) [32].
By utilizing ChatGPT through its API, the authors design a series
of prompts to guide the annotation of LSCD samples. They divide
the dataset into three subsets: training, development, and testing, to
optimize and evaluate the prompts for achieving accurate predic-
tions from ChatGPT. The results indicate that ChatGPT performs
poorly in annotating the samples when prompted with the full an-
notation guidelines presented in a human-like style particularly when
assessed using the Krippendorff’s alpha score [13]. In contrast, Chat-
GPT yields better results when custom prompts are employed.

Periti and Tahmasebi [26] present a systematic comparison of con-
textualized models for the LSCD task. In one of their experiments,

L Periti et al. [27] renamed this dataset as HistoWiC.

they evaluate several models used as computational annotators, in-
cluding GPT-4 only for English. Their findings show that GPT-4
achieves the highest Spearman correlation with human annotations
for the English dataset, outperforming all other models, including
XL-LEXEME. In addition, GPT-4 also shows superior performance
in the Word Sense Induction (WSI) task. However, its performance
in the WiC task falls short compared to that of XL-LEXEME.

However, their work does not address the challenges or potential
of prompt engineering when applying LLMs to LSCD. In particular,
they do not explore how prompt formulation can impact model per-
formance—a key consideration when working with general-purpose
LLMs.

WiC model + LSCD The state-of-the-art models for the LSCD
task consist of two WiC models. The DeepMistake model, introduced
by Arefyev et al. [2], is built on the XLM-R encoder. This model con-
sists of two components: an XLM-R-based encoder jointly encoding
two word usages and a classification head. All weights are trained
on the MCL-WIC dataset [19], and then undergo language-specific
fine-tuning. For Spanish they are fine-tuned on the Spanish version
of the synchronic XL-WSD [23], and the development version of the
DWUG ES [42] datasets. For Russian the RuSemShift [30] dataset is
employed. DeepMistake is the state-of-the-art for LSCD in Spanish
[2] and Russian [8].

The XL-LEXEME model [4] is a pre-trained bi-encoder built on
the XLM-R multilingual model. This model has been trained and
fine-tuned on the MCL-WiC [19] and XL-WiC [29] datasets. XL-
LEXEME currently holds the state-of-the-art position for English,
Swedish, and German datasets [33].

Our work provides a systematic comparison between general-
purpose, open-weight LLMs and specialized LSCD models for the
LSCD task. Motivated by the practical advantages of LLMs—such
as avoiding the need for task-specific fine-tuning—we assess their
performance across multiple evaluation methodologies and datasets.
Unlike previous studies, our work introduces the use of automatic
prompt optimization as a key strategy to enhance LLM performance
for LSCD, aiming to adapt these models more effectively to the task.
In doing so, we prioritize a comprehensive evaluation of their capa-
bilities relative to dedicated LSCD models.

3 Data

In this research, we use two datasets: DWUG EN? [33] and DWUG
ES® [42]. Both datasets contain two corpora, representing text from
an old period of time and a modern period of time (see Table 1). The
methodology used to annotate both datasets follows the 4-point scale
proposed in Schlechtweg et al. [32], where (1) represents sentence
pairs where the target word has unrelated meanings, and (4) repre-
sents identical meanings.

Table 1. Overview of datasets. LGS = languages, Id = identifier of the
dataset, n = number of target words, C'1 = old period of time, C'2 = modern
period of time.

LGS 1d n C1 c2
Spanish ~ DWUGES 60  1810-1906  1994-2020
English DWUGEN 37  1810-1860  1960-2010

Additionally, we employ the DWUG EN resampled dataset*, along
with the development version of the DWUG ES dataset (the test set is

2 https://zenodo.org/records/7387261
3 https://zenodo.org/records/6433667
4 https://zenodo.org/records/14025941



reported in Table 1). As will be detailed later, these two datasets are
utilized to optimize the prompts designed for the LLMs to determine
whether a pair of word usages have the same meaning. For this op-
timization, we partition the resampled DWUG EN and the develop-
ment version of the DWUG ES datasets into training, development,
and test sets, allocating 60% of the data for training and 20% each
for development and testing.

Table 2 presents the frequency distribution of annotation labels in
both datasets, which are used to optimize two prompts: one in En-
glish and the other in Spanish. As observed, the classes are imbal-
anced. To address this issue, we apply stratified random sampling to
ensure equal-sized samples for each class across the training, devel-
opment, and testing sets.

Table 2. Class distribution across DWUG EN resampled and development
version of DWUG ES datasets.

Dataset Class 1 Class2 Class3 Class 4
DWUG EN (resampled) 641 1,658 1,472 2,075
DWUG ES (dev) 1,406 1,522 2,343 3,433

After implementing a stratified sampling strategy, we obtain bal-
anced samples for each class across all partitions in both datasets, as
shown in Table 3. This balanced allocation enhances the robustness
of training, evaluation, and testing for both languages, effectively ad-
dressing the imbalances present in the original datasets.

Table 3. Statistics for each partition of the DWUG EN (resampled) and the
development version of the DWUG ES datasets used to optimize the
prompts for annotating semantic proximity examples.

Datasets Class1 Class2 Class3 Class4 Target words
DWUG EN (resampled) training 300 300 300 300 15
DWUG EN (resampled) dev 100 100 100 100 15
DWUG EN (resampled) test 100 100 100 100 15
DWUG ES (dev) training 500 500 500 500 20
DWUG ES (dev) dev 200 200 200 200 20
DWUG ES (dev) test 225 225 225 225 20

4 Experimental setup

In this section, we present the proposed methodologies designed to
demonstrate the feasibility of using large language models to tackle
the Graded Change LSCD task.

As outlined in Section 3, our experiments utilize two datasets:
DWUG EN and DWUG ES. We generate LSC predictions using
a WSI baseline approach, as described by Schlechtweg et al. [35].
Building upon the prompting strategies introduced in Section 5, we
include results from both initial and optimized prompt configurations
for the LLMs.’ These prompts are designed to generate semantic
proximity judgments consistent with the 4-point scale used in the
manual annotations [32].

In this study, we employ three open-source language models:
Llama 3.1°, Llama 3.3, and Mixtral 8x7B’ (Mixtral:8x7B) [11].
We specifically use the 8 billion-parameter versions of Llama 3.1
(Llama3.1:8B) and the 70 billion-parameter version of Llama 3.3
(Llama3.3:70B). We selected these models to systematically assess
the impact of model scale on LSCD performance. This range en-
ables us to examine how increasing model capacity interacts with

5 https://github.com/fdzr/optimization- prompts-dspy

6 https://ai.meta.com/blog/meta-1lama-3- 1/ (for more information) and avail-
able for download at https://ollama.com/library/llama3.1.

7 https://ollama.com/library/mixtral

prompt optimization and whether larger models consistently offer ad-
vantages across different evaluation approaches and languages. Due
to hardware constraints, we conduct our experiments using all mod-
els in their quantized forms [9].

In the following, we describe the pipeline used to compute predic-
tions from both LLMs and WiC models:

o WiC We annotate gold pairs of usages in the English and Span-
ish datasets. The annotations produced by XL-LEXEME [4] are
the cosine distances indicating whether two word usages share the
same meaning. Additionally, we employ three versions of Deep-
Mistake: MCL->es, enMCL, and MCL, as this model has been
fine-tuned on various WiC datasets across multiple languages [cf.
2, 8]. The scores produced by DeepMistake are the probabilities
that two word usages have the same meaning. Finally, we prompt
Llama 3.1, Mixtral, and Llama 3.3 to annotate the same usage
pairs by generating semantic proximity scores aligned with the 4-
point scale employed in the manual annotation of the employed
datasets [32].

o Word Usage Graph (WUG) A weighted graph is constructed for
each target word, in which the nodes represent usages of the tar-
get word, and the weighted edges correspond to the annotations
predicted by the WiC models or LLMs.

o Clustering methods We apply one of the clustering methods to
the constructed WUGs to infer word senses. Next, to quantify the
semantic change for each word, we calculate the JSD between the
sense frequency distributions of the inferred senses for the old and
new usages.

In addition, we generate LSC scores based on the Average Pair-
wise Distance (APD) approach [14]:

o APD The average pairwise distance, derived from the scores gen-
erated by the WiC models or LLMs’ annotations, is returned as a
measure of semantic change for a word.

4.1 WUG

We select several hyperparameters for the WUG construction proce-
dure:

e normalize: If set to false, the edge weights are the raw scores
provided by the models. Otherwise, they are normalized using the
MinMaxScaler® fitted on all annotations of all words.

e fill diagonal: Controls whether self-loops are inserted.
Self-loops signify that a pair of identical usages has been scored.

e threshold: Edges with weights below this threshold are re-
moved. During grid search, this parameter takes values at the 10th
to 90th percentiles of all edge weights, plus the default value 0.5.

4.2 Clustering methods

We employ in our experiments three clustering methods on WUGs:
Spectral clustering’ [39], Agglomerative clustering'® [10], and
Weighted Stochastic Block Model'' (WSBM) [24]. Spectral cluster-
ing and Agglomerative clustering methods need to know in advance

8 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

SpectralClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

AgglomerativeClustering.html

1 https://graph-tool.skewed.de/static/doc/autosummary/graphtool.inference.

BlockState.html
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Figure 1. Spearman correlation between human and model annotations for word usage pairs (SPR_WiC), and between gold graded change scores and model
predictions using the APD-based approach (SPR_LSCD). “ZS" denotes Zero-Shot, “FS" stands for Few-Shot, and “CT" refers to Chain-of-Thought prompting.

the number of clusters. We test values from 2 to 5 [35] and identify
the optimal value using the Silhouette score [31].

The WSBM method identifies the optimal number of clus-
ters and accommodates various distributions for drawing edge
weights through the distribution parameter. This parameter can
take the following values: poisson, binomial, geometric,
exponential, and normal. Poisson, binomial, and
geometric are only applicable to discrete edge values while real
and exponential are only applicable to real-valued edge weights.

5 Prompts and their optimizations

To address RQ1: Can automatically optimized prompts yield bet-
ter results for the LSCD task than manually crafted prompts
designed through prompt engineering?, we design an experi-
ment comparing the performance of LLMs using manually crafted
prompts with that of LLMs using optimized prompts informed by
training data.

Building on the work of Yadav et al. [41], we utilize the manu-
ally optimized prompt identified by the authors as the most effective
for classifying semantic proximity samples. Originally crafted in En-
glish, this prompt was translated into Spanish to create an additional
version tailored for semantic proximity samples in Spanish. Addi-
tionally, we extend the non-optimized prompts with semantic prox-
imity examples provided to the annotators in the web of the DURel
framework [32]. Based on these examples, we create three prompts:

e Zero-shot We provide instructions to annotate the samples using
the 4-point scale, along with an explanation for each point on the
scale.

e Few-shot We provide instructions to the model to annotate the
samples using the 4-point scale, and include an example of a pair
of sentences for each possible annotation.

e Chain of Thought This setting is the same as the few-shot ap-
proach, with the key difference that we prompt the model to rea-
son step by step and to explain the rationale for the score it assigns
to each example.

As mentioned in Section 1, hand-optimizing prompts is a chal-
lenging task, as even slight adjustments in the instructions can result
in significantly different interpretations or responses from the model.
To tackle this issue, we further refine both prompts using the DSPy
framework [12], leveraging the data presented in Table 3.

We develop a DSPy program that employs the MIPROv2 (Multi-
prompt Instruction PRoposal Optimizer) optimizer [22] in conjunc-
tion with the accuracy metric to optimize the prompts, utilizing the
default parameters for this optimizer.'”> Additionally, we conduct sev-
eral experiments varying the number of samples per class provided
to the optimizer to explore how this parameter influences the quality
of the generated prompts. We observe a consistent pattern across all
settings: increasing the number of samples per class generally leads
to the generation of better prompts, resulting in higher accuracy on
the test set.

MIPROV2 optimizes DSPy prompts by learning how instruc-
tions and demonstrations affect task performance. It generates
demonstrations via bootstrapping and proposes instructions using
grounding, where a language model receives contextual informa-
tion about the dataset, program, and past prompts. New configura-
tions—combinations of instructions and demonstrations—are pro-
posed using Bayesian optimization and evaluated on mini-batches.
The best-performing configurations are then selected based on full
training set performance [12].

We then annotate the test sets using both English and Spanish
prompts for the English data, and both English and Spanish prompts
for the Spanish data. Subsequently, we select the best prompt based
on accuracy to annotate the DWUG EN and DWUG ES datasets.

Table 4. Accuracy of non-optimized prompts (NOP) and optimized
prompts (OP) for DWUG EN and DWUG ES datasets, using prompts in
English (PrE) and Spanish (PrS). Results are reported for Mixtral, Llama

3.1, and Llama 3.3 as the underlying LLMs.

Llama 3.1 Mixtral Llama 3.3
Dataset-Prompts NoOP OP NoOP ()3 NOP ()3

DWUGES - PrS 26.8 29.5 326 3122 3233  39.77
DWUGES - PrE 26.5 35.5 337 3480 4088  46.33

DWUGEN-PrS 2575 31.0 32.8  40.75 3725 45.5
DWUGEN-PrE 2875 37.25 3325 3875 3575 49.25

Table 4 presents the accuracy results for non-optimized and opti-
mized prompts in classifying pairs of usages according to their la-
bels on the 4-point scale. Bolded results indicate the best-performing
prompt type for each dataset. Notably, the best prompt for a given
dataset is not always in the same language as the dataset itself. Fi-
nally, we select the best-performing prompt for each dataset to anno-
tate the LSCD samples.

12 https://dspy.ai/learn/optimization/optimizers/
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Figure 2. APD-based approach with various WiC models and LLMs, Spearman correlation with the gold graded change word scores is reported.
“COMPARE” calculates APD across usage pairs consisting of usages from different time periods, while “ALL” employs usage pairs regardless of their time
periods.

Figure 1 presents a comparison between manually engineered
prompts and automatically optimized prompts, evaluated using
two metrics: the Spearman correlation between human and LLM-
generated annotations, and the Spearman correlation between gold
graded change scores and predictions derived from the APD-based
approach using LLM annotations. The results show that optimized
prompts substantially outperform manually crafted ones across both
languages and experimental setups.

These results show that automatic prompt optimization consis-
tently improves the performance of medium-sized models (i.e.,
Llama3.1:8B and Mixtral:8x7B) on the LSCD task. Next, we ex-
tend our investigation to a larger and more recent model (specifically,
Llama3.3:70B). All subsequent experiments will be conducted us-
ing LLM annotations generated with the best performing optimized
prompts obtained using the methodology presented here.

6 Experiments for graded change detection

In this section, we describe the methodology employed to answer
RQ2 proposed earlier in Section 1.

To address this research question, we design two experiments: one
based on the APD approach and the other using cross-validation.
The APD-based approach does not require the selection of hyper-
parameters, allowing us to evaluate the entire test set. In contrast, the
clustering-based approach involves several hyperparameters; there-
fore, we use cross-validation to select the optimal values for these
hyperparameters for each of our models individually.

It is important to note that these two approaches enable us to ad-
dress the Ranking LSCD task from different perspectives. APD of-
fers a direct quantification of a word’s semantic change by calculat-
ing the mean of the scores associated with usage pairs from different
time periods for each word. In contrast, the cross-validation evalu-
ation method and clustering methods focus on the underlying WSI
problem.

6.1 APD

We utilize the APD aggregation method to calculate the graded se-
mantic change for each word based on annotations provided by the
LLMs, DeepMistake, and XL-LEXEME. Although APD is typically
applied to usage pairs originating from different time periods (COM-
PARE pairs), we also evaluate the performance of the APD-based ap-

proach using usage pairs from any time period (ALL pairs) to assess
its effectiveness in determining the graded semantic score.

Figure 2 presents the results of this experiment. An initial obser-
vation reveals that, for English, Llama3.3:70B achieves the best per-
formance, closely followed by XL-LEXEME and enMCL. Although
Mixtral:8x7B and Llama3.1:8B yield the lowest results, their Spear-
man correlations of 0.81 and 0.80, respectively, remain notably high.
Finally, although the performance of all models declines when us-
ing ALL sentence pairs compared to COMPARE, Llama3.3:70B and
XL-LEXEME are the models least impacted by this effect.

For Spanish, the best-performing model is MCL->es, fol-
lowed by Llama3.3:70B as the second-best. Mixtral:8x7B and
Llama3.1:8B demonstrate similar performance—Ilower than MCL
and Llama3.3:70B but higher than XL-LEXEME. However, when
using ALL sentence pairs, the performance of all models declines
significantly. Notably, in this case, Llama3.1:8B is less affected by
this drop compared to Llama3.3:70B and Mixtral:8x7B.

We conclude that recent prompt optimization techniques are cru-
cial for achieving better results on the Graded Change LSCD task,
as demonstrated by the performance of Llama3.3:70B. However,
medium-sized LLMs such as Mixtral:8x7B and Llama:3.1:8B still
underperform compared to smaller and faster specialized LSCD
models in both the DWUG EN and DWUG ES datasets. This sug-
gests that, in addition to optimization techniques, the size of the
model also significantly influences the results. Furthermore, our find-
ings indicate that using COMPARE sentence pairs is more effective,
as they more accurately capture the true relationships between sen-
tence pairs from different time periods.

6.2 Cross validation with clustering

We employ a cross-validation approach combined with hyperpa-
rameter optimization to assess the capacity of the LLMs to ad-
dress the Graded Change LSCD task, as explained in Section 4.
For the DWUG ES and DWUG EN datasets, we divide the sets of
60 and 37 target words into five folds. Subsequently, within each
cross-validation iteration, we conduct an exhaustive hyperparame-
ter grid search. This process encompasses hyperparameters for the
WiC model, WUG, and clustering methods (see Section 4). The op-
timal configuration is identified in the training folds and subsequently
evaluated in the testing fold. This procedure yields five performance
scores (SPR_LSCD for LSCD and ARI for WSI) for each clustering



Table 5. Performance of various methods across cross-validation experiments on the DWUG ES and DWUG EN datasets. The table compares different
clustering approaches: AC (Agglomerative Clustering), SC (Spectral Clustering), WSBM (Weighted Stochastic Block Model). APD is reported to evaluate the
performance of the models in identifying the different senses of a word, as opposed to quantifying the semantic change of a word without discerning the senses

of the target words. The random baseline assigns a score between 1 and 4 randomly.

Methods Models Spr_LSCD (ES) ARI (ES) Spr_LSCD (EN) ARI (EN)
WSBM 369 +.204  356+.116 .845+.097 .152+.067
SC Llama 3.1 271+ 461  .102+.097 .014+ 411 -.03 £ .01
AC 478 +£.286  .073+.058  .205 +.540 -.01+.03
APD .636 +.236 - .645 +.368 -
WSBM 454 +.180 .380+.104 776 +.219 161 +.07
SC Mixtral 565+.141 .092+.049 -.171+.492  -.03+.01
AC 414+ .075 068 £.027  -.04+.525 -.003+.02
APD 567 +.332 - 612 +.280 -
WSBM 659 +.181  .502 +.09 729 + 241 183 +.08
SC Llama 3.3 507 +.231 294 + .05 302 + .436 124 + 113
AC 423 +.184 228 +.05 195 +.273 -.01£.01
APD 676 +.195 - 7152 +.227 -
WSBM J27£.206 397 +.074  730+.212 231+ .212
SC DeepMistake 561 +.140  .355+.036 .520+.436 273 +.115
AC 457 +.320  .341+.054  433+£.245 215+.128
APD .653 +.250 - .638 +.292 -
WSBM 630+ .377  452+.095 .686+.200 .152+.059
SC XL-LEXEME 484 + 215  318+.043 491+ .176  .137 +.063
AC 426+ .255 .292+.087  .143 +.367 .02 +.024
APD 566 +.354 - 814 +.199 -
WSBM Random Baseline -.199 +.310 -02+.184 -.111+.254 -05+.147

method, from which we calculate the mean and standard deviations,
following the procedure proposed by Schlechtweg et al. [35]. Finally,
we incorporate APD with cross-validation across all models to facili-
tate a comparison between the performance of models that first iden-
tify the senses of each word and a method that directly quantifies
semantic change for each word.

Table 5 presents the results of the experiments conducted on the
DWUG ES and DWUG EN datasets. We compare the outcomes ob-
tained from the WSI-based approach, where predictions made by
DeepMistake, XL-LEXEME, and various LLMs are used to con-
struct WUGS.

Regarding the DWUG ES dataset, an initial observation reveals
that the combination of DeepMistake and WSBM outperforms Deep-
Mistake with APD, the latter previously considered the state-of-the-
art for this dataset. Among the LLMs, Llama3.3:70B achieves the
best performance, surpassing not only other LLMs but also XL-
LEXEME, although it still trails behind DeepMistake combined with
WSBM. Llama3.1:8B and Mixtral:8x7B perform less effectively
than Llama3.3:70B, yet both still significantly outperform the ran-
dom baseline.

While these findings suggest that LLMs can be valuable tools for
tackling the LSCD task, they have not yet reached a level of per-
formance that rivals the state-of-the-art model on the DWUG ES
dataset. The results indicate that the annotations generated by the
LLMs lack the necessary accuracy to effectively distinguish the dif-
ferent senses of the target words, thus limiting the interpretability of
the outcomes.

The following experiment presents the results for the English
benchmark. As shown in Table 5, the WSBM method combined with
Llama3.1:8B emerges as the most effective approach to detect se-
mantic change. This performance surpasses that of all other models,
regardless of the clustering methods employed or APD, demonstrat-
ing Llama3.1:8B’s strong ability to generalize on the DWUG EN
dataset and effectively address the WSI task.

Similarly, the results obtained by Mixtral:8x7B combined with
WSBM are slightly lower than those of Llama3.1:8B with WSBM,
yet they surpass those of DeepMistake, XL-LEXEME, and even
Llama3.3:70B across all clustering methods. This underscores Mix-
tral:8x7B’s strong potential for the LSCD task, particularly when

enhanced through techniques such as fine-tuning. Notably, both
Llama3.1:8B and Mixtral:8x7B perform better with WSBM than
with APD. In contrast, Llama3.3:70B combined with WSBM—its
best-performing clustering method—shows a notable drop in perfor-
mance compared to the APD approach, suggesting that its annota-
tions may lack the quality needed to produce meaningful sense clus-
ters.

The results of this study demonstrate that Llama3.1:8B is the most
effective model for addressing the LSCD task using a WSI-based ap-
proach on the DWUG EN dataset. Its predictions, when combined
with clustering methods, yield results that surpass those of state-of-
the-art models employing similar clustering techniques, and even
outperform Llama:3.3:70B, which achieved the best results using
APD for English.

However, Mixtral:8x7B, Llama:3.1:8B, and Llama3.3:70B strug-
gle to generalize effectively or produce accurate predictions on the
4-point scale for the Spanish dataset. These findings are consistent
with the performance of all three models when using APD. A poten-
tial explanation for these contrasting results is the significantly larger
volume of training data available for English compared to Spanish,
which may have impacted the models’ ability to generalize and per-
form accurately.

7 Experiments at WiC annotation level

In this section, we explore the annotations generated by all models at
the annotation level. This analysis aims to answer the RQ3 posed in
Section 1: Can LLMs outperform state-of-the-art LSCD models
at the annotation level?

The scores provided by the LLMs employed in this study corre-
spond to annotations for all usage pairs that were also annotated by
human annotators. To ensure consistency, we first filter out any usage
pairs that do not have a score within the 4-point scale. We then com-
pute the intersection between the gold-standard usage pairs and the
filtered annotations from the LLMs. The remaining gold usage pair
annotations are aggregated by calculating the median score across all
annotators for each pair. Finally, we report the Spearman correlation
between the aggregated gold annotations and the scores produced by
the LLMs and WiC models.
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Figure 3. Spearman correlation between the annotations provided by
human annotators, LLMs, DeepMistake models, and XL-LEXEME.

Figure 3 illustrates the Spearman correlation between the annota-
tions provided by LLMs, DeepMistake models, and XL-LEXEME
with the annotations provided by human annotators (SPR_WiC).
The results across both datasets indicate that Mixtral:8x7B and
Llama3.1:8B underperform compared to the other models. No-
tably, Llama3.3:70B achieves the highest SPR_WiC for the English
dataset, which is consistent with its strong performance on the same
dataset using the APD method. For Spanish, the MCL->es model
achieves the highest correlation, reaffirming its effectiveness in the
Spanish dataset.

The results achieved by Mixtral:8x7B and Llama3.1:8B appear
somewhat contradictory: both models perform well in the graded
change detection task for English, yet their performance in the
annotation-level WiC task is notably low. Llama3.3:70B, on the other
hand, presents the second-best performance for Spanish when using
APD, but its performance in the annotation task remains low despite
this. Overall, the performance of Mixtral:8x7B and Llama3.1:8B is
inferior to that of smaller and faster specialized LSCD models, and
Llama3.3:70B’s performance for Spanish also falls short of these
specialized models.

8 Conclusion

This study evaluated the effectiveness of large language models
(LLMs) in addressing the Graded Change LSCD task, focusing on
both Spanish and English datasets and comparing their performance
against specifically designed and trained LSCD models that represent
the state-of-the-art. In addition to evaluating model performance, we
also explored the impact of automatic prompt optimization to better
adapt LLMs to the task (RQ1).

A key result of this work is that LLMs, when equipped with
optimized prompts, can outperform task-specific LSCD models. In
particular, Llama3.3:70B, a large model paired with a prompt se-
lected through automatic optimization, achieves state-of-the-art per-
formance on the English dataset using the APD evaluation (RQ2).
This finding highlights the potential of scaling and prompt engineer-
ing to unlock LLMs’ capabilities for semantic change detection. Fur-
thermore, Llama3.3:70B achieves the best result at the annotation
level for the English dataset (RQ3). However, results across other
evaluation settings are more mixed: While Llama3.1:8B and Mix-
tral:8x7B perform well under specific conditions (e.g., WSI-based
clustering), they underperform at annotation level compared to the
specialized LSCD models (RQ3). Furthermore, for Spanish, even
Llama3.3:70B, despite ranking second in APD-based evaluation,
fails to surpass specialized LSCD models—especially in annotation-

level performance—demonstrating that challenges remain in cross-
lingual generalization and fine-grained semantic interpretation.

These findings underscore the limitations of Llama3.1:8B and
Mixtral:8x7B as general-purpose LLMs for the LSCD task, while
also highlighting the promising potential of optimized prompts and
the use of larger models for improving model performance. We will
further investigate factors that may be influencing these results, in-
cluding the role of quantization—for instance, whether unquantized
models yield better performance on fine-grained semantic tasks. Ad-
ditionally, we plan to shift our optimization target from accuracy
to Spearman correlation, which better reflects the nature of graded
change detection. Finally, LLMs continue to struggle with the under-
lying WSI problem, which may be central to improving both perfor-
mance and the interpretability of results in LSCD tasks.
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