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Abstract Background Three popular application domains of sentiment and emo-
tion analysis are: 1) the automatic rating of movie reviews, 2) extracting opinions and
emotions on Twitter, and 3) inferring sentiment and emotion associations of words.
The textual elements of these domains differ in their length i.e., movie reviews are
usually longer than tweets and words are obviously shorter than tweets, but they also
share the property that they can be plausibly annotated according to the same affective
categories (e.g., positive, negative, anger, joy). Moreover, state-of-the-art models for
these domains are all based on the approach of training supervised machine learning
models on manually-annotated examples. This approach suffers from an important
bottleneck: manually annotated examples are expensive and time-consuming to ob-
tain and not always available.
Methods In this paper we propose a method for transferring affective knowl-
edge between words, tweets, and movie reviews using two representation techniques:
Word2Vec static embeddings and BERT contextualized embeddings. We build com-
patible representations for movie reviews, tweets, and words, using these techniques
and train and evaluate supervised models on all combinations of source and target
domains.
Results and Conclusions Our experimental results show that affective knowledge
can be successfully transferred between our three domains, that contextualized em-
beddings tend to outperform their static counterparts, and that better transfer learning
results are obtained when the source domain has longer textual units that the target
domain.

Keywords Transfer learning · sentiment analysis, affect in language

Felipe Bravo-Marquez (Corresponding author)
Department of Computer Science, University of Chile
Millennium Institute for Foundational Research on Data, IMFD-Chile
E-mail: fbravo@dcc.uchile.cl

Cristián Tamblay
Department of Computer Science, University of Chile
E-mail: ctamblay@dcc.uchile.cl



2 Felipe Bravo-Marquez, Cristián Tamblay

1 Introduction

The field of sentiment analysis attempts to computationally extract people’s opinions,
emotions and views from natural language texts. A closely related field is affective
computing, which focuses on the design of machines capable of recognizing and
expressing human emotions [8]. Finally, the field of sentic computing proposes a
holistic view of human emotions and natural language that integrates both sentiment
analysis and affective computing with other related disciplines such as knowledge
representation, linguistics, and psychology [9].

These techniques have been successfully applied in various domains, such as au-
tomatic monitoring of public opinion in social media, conducting market research
and improving companies’ customer service. As a more concrete example, in [21],
the authors applied sentiment analysis techniques to tweets related to the 2016 U.S.
presidential election, and reported a correlation of 94% with official polls. Authors
in [49], predicted movie ratings on RottenTomatoes1, a website where experts assign
ratings to movies, using movie reviews as input data.

A particular property of sentiment and emotions is that they can be found across
all types of linguistic units (e.g., words, phrases, sentences, paragraphs, documents)
and textual sources (e.g., social media publications, movie reviews, newspapers). In
this paper, we study how the affective2 knowledge between three different domains
can be leveraged and ultimately transferred: words, tweets, and movie reviews.

We argue that because of the semantic interaction between words, sentences, and
documents, the affective patterns between these three domains are strongly inter-
connected, something that has been widely studied by the linguistics community as
discussed below.

The principle of semantic compositionality claims that the meaning of a sentence
is a function only of the meaning of its lexical units, together with how these units are
combined [38]. This principle suggests that the meaning of a sentence is determined
by the meaning of its individual words as well as the sentence structure. The distribu-
tional hypothesis, on the other hand, states that words used in the same contexts tend
to have similar meanings [19]. As a consequence, word meanings can be inferred by
the contexts in which they occur.

These two linguistic theories propose a conceptual framework of meaning for
both words and sentences, which we extend in this work to affective states such as
sentiment and emotions. The relationship between meaning and affect can be argued
at both the lexical and sentence level. At the lexical level it can be argued that words
with similar meanings (i.e., synonyms) probably express the same sentiment, and
similarly, sentences that convey the same meaning using alternative expressions are
also very likely to express the same sentiment and the same emotions.

These principles are used in this research to find exploitable patterns in the rela-
tionship between words, sentences, and documents. More specifically, we focus on
specific sentiment and emotion detection tasks described below.

1 www.rottentomatoes.com
2 We use the term “affect” to encompass both sentiment and emotions.
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The sentiment analysis tasks that we study are: 1) polarity lexicon induction (PLI)
[2], 2) sentence-level sentiment classification (SSC) [35], 3) and document-level sen-
timent classification (DSC) [3]. The objective of the PLI task is to determine the se-
mantic orientation of a word in a lexicon, which corresponds to classifying whether
the word is positive or negative. For example, it classifies the word “happy” as posi-
tive and the word “sad” as negative. Meanwhile, the SSC task aims to classify entire
sentences as positive or negative. An example of this task would be to classify the
tweet “my dog is the best #doglover” as positive3. Finally, the DSC task intends to
classify entire documents as positive or negative, based on the opinion expressed in
them. Movie reviews are a clear example of this task.

We also study two emotion tasks at both word and sentence level4. The first task
is the detection of word affect intensities (WAI) [34], which consists of associating
words with real-valued intensity scores for four basic emotions: anger, fear, sadness,
and joy. For example, the word “outraged” has a higher intensity for the emotion
anger than the word “agitated”. The second task is the detection of sentence-level
affect intensities (SAI), which consists of detecting the intensity of emotion felt by
the speaker of a tweet [32].

All the above tasks share the property of being addressed by supervised learning
algorithms trained on numerical vector representations of their corresponding lexical
units and manually annotated labels. However, manually annotating words, tweets,
and movie reviews into affective categories can be very time consuming and expen-
sive.

In many practical scenarios, the resources needed for training supervised models
(i.e., annotated examples) are not available. A possible solution to this problem, is to
adapt models trained from a related domain where training data is available, to the
task at hand.

In the context of sentiment classification, training a model in the word domain and
then applying it in a sentence classification task (or vice versa) has been shown to be
useful when training data from the target domain is insufficient [6]. This exercise is
commonly known as transfer learning. Transfer learning between two domains refers
to the acquisition of knowledge from a source domain and its subsequent application
to a target domain. A formal definition of transfer learning is given as follows:

Definition 1 (Transfer learning) Given a source domain DS and a learning task TS,
a target domain DT and a learning task TT , transfer learning aims to help improve
the learning of the target predictive function fT in DT using the knowledge DS and
TS, where DS 6= DT , or TS 6= TT [37]

Transfer learning requires both the source and target domains to be related. The three
domains we focus in this study (words, tweets, and movie reviews) are related in the
sense that they can all be plausibly associated with the same affective categories (e.g,
positive, negative, anger, joy).

Each one of our domains expresses affect in a unique way. First, tweets capture
someone’s mood and thoughts in a short but emotionally charged message. Then,

3 In this work we make the assumption that tweets are usually formed by a single sentence.
4 We do not study emotions at the document level due to the lack of annotated data to experiment with.
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movie reviews comprehensively reflect why someone liked or disliked a movie. Fi-
nally, the field of lexical semantics has widely studied the inherent affect of isolated
words, which is also referred to as semantic orientation [15]. Another important dif-
ference between our domains is the length of their respective linguistic units: movie
reviews are typically longer than tweets, and tweets are composed by words.

The core of our transfer learning proposal is to represent the lexical units of each
domain with compatible representations (i.e., numerical vectors residing in the same
vector space). Afterwards, a classifier can be trained on labeled instances from a
source domain, to be later deployed on instances from a target domain. Any of our
three domains (i.e., words, tweets, and movie reviews) can interchangeably play the
role of source or target domain.

The most important building block that our approach requires, is a model capable
of representing lexical units of different lengths as compatible feature vectors. In this
work, we adapt two popular resources in Natural Language Processing (NLP) for this
purpose: 1) static word embeddings [30], and 2) contextualized word embeddings
[14].

The main difference between them is that while static word embeddings assign a
fixed representation to each word, contextualized word embeddings provide a vari-
able representation that depends on both the word and its context.

Specifically, we experiment with all the affective tasks and combinations of source
and target domains described above, using the following representation models:

– BERT-Base contextualized word embeddings [14].
– Word2Vec [30] static word embeddings trained on the same dataset as BERT-Base

(i.e., Wikipedia + BookCorpus [60]).
– Word2Vec [32] static word embeddings trained over a corpus of tweets.

The main contribution of this work is a new framework that allows a transparent
comparison of static and contextual word embeddings for various scenarios of affec-
tive knowledge transfer between words, tweets, and movie reviews. We argue that
this approach can be especially valuable when annotated data in the target domain
is scarce. Moreover, we also believe that our proposal can benefit the sentic comput-
ing community, as it allows for directly transfering affective knowledge from lexical
resources such as SenticNet [10] to other domains.

The remainder of this article is organized as follows. Section 2 presents a back-
ground in NLP and language representation relevant to this article. In Section 3 we
provide a review of related work in affect analysis. In Section 4, we describe the
proposed method for transferring affective knowledge. In Section 5, we present the
experiments conducted to evaluate transfer learning tasks and discuss results. The
main findings and conclusions are presented in Section 6.

2 Background

In this section we present several concepts of Natural Language Processing (NLP)
that are used in this article. The goal of NLP is to enable computers to process and
analyze human language. Lexical semantics, which is a particular sub-area of NLP,
aims to find hidden semantic relationships between lexical units such as words.
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The simplest way to turn a word into a vector is to use the one-hot encoding
model, that is, a sparse vector of the size of the vocabulary, containing a value of 1 in
the corresponding word’s index. This model can naturally be extended to represent a
document by adding or averaging the one-hot encoded vectors of their words, which
is referred to as the the bag of words model [19].

Due to the proliferation of deep neural networks in NLP, word and sentence rep-
resentation models have experienced a dramatic evolution during the last decade that
resulted in more powerful word and sentence representation models such static and
contextualized “word embeddings” to be presented next.

On the one hand, static word embeddings define an injective mapping f between
words and their respective d-dimensional representations, i.e.,

f : wi→Rd (1)

This means that one word has only one representation. On the other hand, contextu-
alized word embeddings define an injective mapping f from a sequence of words of
length n to a sequence of d-dimensional representations, i.e.,

f : {w1,w2, ...,wn}→ (Rd)n (2)

In this paradigm, each word has as many representations as contexts.
A salient property of these two models is their ability to learn from massive

amounts of unlabeled corpora, which can be freely obtained from the Web.
Word2Vec [30] and GloVe [39] are possibly the most popular static word em-

bedding models that can be efficiently trained on large corpora. These models can
effectively capture semantic and syntactic properties of words by exploiting their
surrounding words in a fixed sized window [7]. In [58], authors employed these mod-
els for sentiment classification, yielding results with an accuracy above 85%. Static
word embeddings have improved the performance of a wide range of NLP tasks,
such as machine translation [61] and text classification [22]. The main limitation of
static word embeddings is that they conflate all the different meanings of polysemous
words into a single representation.

Over the last years, novel contextualizers such as ELMo, BERT, [14] and XLNet
[56] have dramatically improved performance for many (NLP) tasks, including sen-
timent analysis. ELMo and its predecessors extract context-sensitive features from
left-to-right and right-to-left text representation models. This model advanced the
state-of-the-art for several NLP benchmarks [40]. With the release of the Transformer
architecture [52], LSTM-based neural networks, such as ELMo, started to fall behind
mainly because Transformers can more efficiently deal with long-term dependen-
cies [51]. BERT and XLNet are examples of deep learning architectures that use the
Transformer architecture [52]. These architectures can concurrently process all inputs
of a sequence, leading to faster training times. Because of this, novel Transformer-
based architectures quickly gained more attention than LSTM-based ones. They can
exploit the advantages of the new graphics processing units (GPUs) and be trained
over massive datasets. The standard way to use these models consists of a pre-training
phase, in which the model is built in a self-supervision scheme over a large corpus,
and then a fine-tuning phase in which the model is adapted to the target task where
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labeled examples are available. Alternatively, a pre-trained contextualizer can be used
as a feature extractor without the need for fine-tuning [43].

As discussed so far, the idea of pre-training a neural network model from a large
corpus to obtain language representations is now a standard practice in NLP. Below
we summarize the most relevant architectures that follow this approach:

– Word2Vec [30]: this is a two-layer neural network that is trained over a corpus
of documents and returns a set of feature vectors for the words in that corpus.
Word2Vec model is used for learning vector representations of words. This model
is based on the static word embeddings paradigm.

– Recurrent Neural Network (RNN): in these networks, a transformation is re-
peatedly applied to a sequence of input vectors to produce another sequence of
output vectors. For example, the long short-term memory network (LSTM) is
an RNN architecture in which the model is continuously fed with new inputs
along with the previous state vector and can decide whether to add to or remove
information from the state cell. LSTMs can keep track of arbitrary long-term
dependencies relatively well. LSTMs serve as the basic building block of first
generation contextualized models such as ELMo [40].

– Attention: an attention function is a map f from a query and multiple (key,value)
pairs, i.e.,

f : query× (keys,values)n→Rd (3)

The output is computed as a weighted sum of the values, where the weight as-
signed to each value is computed by a function [52]

w : query×key→ weight (4)

– Encoder - Decoder: An encoder is a stack of several recurrent units or attention
mechanisms where each one accepts a single element of the input sequence, col-
lects information for that element, and propagates it forward. A decoder takes the
encoder vectors as input; it goes through several other recurrent units or attention
mechanisms and produces an output [54].

– Transformer: this neural network relies entirely on an attention mechanism to
capture global dependencies between input and output. The Transformer follows
encoder-decoder overall architecture using stacked self-attention and point-wise,
fully connected layers for both the encoder and decoder. The Transformer allows
for significantly more parallelization than RNNs [52].

The success of BERT led to the development of many other models based on
it, many of which have reported state-of-the-art results in various NLP tasks. Ex-
amples of these are DistilBERT [46], RoBERTa [24], ERNIE [59], BETO [11] and
ELECTRA [13]. This success is the motivation for our work, and to the best of our
knowledge, there are no studies on using BERT to transfer affective knowledge across
multiple domains.
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3 Related Work

In this section, we review works on transfer learning, sentiment analysis and sentic
computing that are relevant to this article.

As explained in the introduction, transfer learning refers to the acquisition of
knowledge from one source domain and its application to a related target domain.
Prior work on transfer learning focuses on domain adaptation, i.e., training a classifier
in one domain, e.g., internet blogs, and deploying it in a domain where a different
terminology is used, e.g., newspapers. [17].

There is a proposed transfer learning framework for transferring sentiment knowl-
edge between words and tweets based on the aggregation of instances in [6]. This
work provides the foundations of our own work, representing tweets and words us-
ing compatible representations. Words are represented as the collection of tweets in
which they occur and sentences are the centroid of each word representation. How-
ever, this paper relies on high-dimensional sparse representations such as word uni-
grams. In contrast, our work focuses on modern deep learning architectures and dense
representations. Moreover, we also go beyond sentiment, analyzing also the intensi-
ties of emotions.

WordNet [31] is an English database created in the 90s that links nouns, verbs,
adjectives, and adverbs to form sets of synonyms called synsets. These synonyms
are, in turn, connected by semantic relationships that determine the definitions of
words. This resource is particularly useful for handling polysemic words, that is,
words with multiple meanings. In [15], a polarity classifier was trained using the
WordNet database on a set of positive and negative labeled words. For each unknown
word, related terms in which the polarity is known are retrieved (e.g., synonyms,
antonyms) and used to classify the unknown polarities by assuming that synonyms
must have the same polarity and antonyms the opposite. The resulting expanded lex-
icon is employed to determine the polarity of sentences by adding up the polarity of
their words. This process can be considered as an example of transfer learning from
the domain of words to the domain of sentences.

In [20], the authors adopted an approach where sentiment annotated Amazon
reviews help transfer knowledge to the aspect-level sentiment classification task using
an LSTM neural network architecture.

An algorithm based on the joint regularization of a bipartite graph of labeled
and unlabeled nodes was proposed in [47]. The nodes correspond to documents and
words, and sentiment labels are propagated from the labeled nodes to the unlabeled
ones using regularized least squares.

In [29], a framework for incorporating word knowledge to text sentiment classifi-
cation using a generative Naı̈ve Bayes model was proposed. In that paper, the authors
refine the knowledge of a sentiment lexicon with annotated blogs. They then proceed
to classify movie reviews, political blogs, and IBM products reviews.

A recursive neural tensor network capable of learning the sentiment of lexi-
cal units of different granularities such as words, phrases (including negated ex-
pressions), and sentences was proposed in [48]. An unsupervised learning approach
for Twitter sentiment analysis using three domain-independent sentiment lexical re-
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sources [12], shows that lexicons can infer the sentiment of tweets by averaging the
sentiment values of their lexical units.

In the following paragraphs, we present other works that fall within the sentic
computing paradigm and are relevant to this study.

A relevant problem in sentiment analysis is contextual polarity ambiguity. This
problem is tackled in [55] by performing word polarity disambiguation using Bayesian
model with opinion-level features. In [25], the authors proposed a novel neural net-
work architecture and two extensions of the traditional LSTM architecture for the task
of targeted aspect-based sentiment analysis, i.e., recognizing aspect categories and as-
signing their polarity. The work of [42] introduces a novel paradigm for concept-level
sentiment analysis that combines the Hourglass of Emotions [50], common-sense
computing, and deep learning techniques. In [1], authors propose a stacked ensemble
method for predicting real-valued intensities of emotion and sentiment. The method
combines the outputs of various deep learning and standard feature-based models
using a feedforward network. Finally, [44] applied a convolutional neural network
for sentiment classification of Hindi movie reviews that outperformed many other
machine learning baselines.

4 Proposed Methodology

This section starts by introducing our transfer learning method, followed by a de-
scription of how to represent words and sentences using static word embeddings and
ends with another description of how to achieve the same goal using contextualized
word embeddings.

4.1 Method

This subsection introduces a new method for transferring affective knowledge be-
tween words, sentences, and movie reviews based on two paradigms of language rep-
resentation. As stated in Section 1, the principle of semantic compositionality states
that the meaning of a sentence depends on its lexical elements together with the form
in which they are composed. On the other hand, the distributional hypothesis suggests
that word meanings can be inferred by the contexts in which words occur.

These two semantic theories lay the foundation of our study, giving us the tools
to jump from the word domain to the sentence or document domains and vice versa.
Our method is inspired by previous work to transfer sentiment knowledge word and
tweets [6]. The method is illustrated in Figure 1. One domain will act as the source
domain DS and the other as the target domain DT . The transfer learning procedure is
described in the following steps:

1. Set the language representation model, choosing between static or contextualized
word embeddings.

2. Represent both the training instances from the source domain DS and the testing
instances from the target domain DT with the chosen representation model to
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obtain compatible k-dimensional vectors, using aggregation functions explained
in the next subsections.

3. Train a predictive model on the training instances represented according to previ-
ous step.

4. Apply the resulting model to the corresponding testing instances from DT .

Fig. 1: Method for transferring sentiment knowledge between words, tweets and
movie reviews

As an example, let us assume a scenario of transferring sentiment knowledge
between words to tweets. We have the following annotated words {“hate”: negative,
“love”: positive} and the following annotated tweets {“I detest this movie”: negative,
“I love you”: positive}. First, we represent both datasets with the chosen paradigm,
obtaining compatible representations. Then, we train a classifier on the word’s dataset
and predict the sentiment of the target tweets, using the corresponding representations
in both cases. Finally, we evaluate the overall performance of the classifier on the
target domain. We expect that after obtaining sentiment knowledge from the word
domain, the classifier will be able to successfully classify the sentiment of tweets as
a result of the semantic relationships between these two domains. The same could
be done in the other direction, training on the tweet domain and testing on the word
domain. This process is illustrated in Figure 2.

It is worth pointing out that the classifier will not be further adjusted (i.e., by
tuning hyper-parameters) using data from the target domain, since we are interested
in evaluating the model’s transfer learning capabilities in a scenario where there is no
training data in the target domain.
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3

{love, positive}
Representation

{[1, 1], positive}

{[1, 1], positive} Train Classifier

Classifier

{I love you, positive} {[2, 1], positive}

Predict{[2, 1],  ?} {[2, 1], negative}

{[2, 1], positive}

{[2, 1], negative}
Compare and Evaluate

Real

Predicted

Words

Sentences or 
Documents

Word2Vec or 
BERT

Fig. 2: Illustrative example of transferring sentiment from words to tweets using
2-dimensional representations.

Having introduced the fundamental ideas of our methodology, we now describe
how words, sentences, and documents are represented using our two aforementioned
paradigms.

4.2 Static word embeddings

As discussed in Section 2, static word embeddings define an injective mapping be-
tween words and vectors:

f : wi→Rd . (5)

This means that a word has one and only one representation. These static word em-
beddings are obtained by training neural networks on large corpora. There are some
hyper-parameters that need to be adjusted such as the context’s size and the embed-
dings vectors’ size. The context size is usually known as the window size and refers
to the number words surrounding each target word that are considered during the
learning phase. The embeddings vectors’ size is usually set between 100 to 300 di-
mensions. Very low dimensional embeddings are usually incapable of capturing rich
semantic information. On the other hand, there is no evidence of significant gains by
increasing the dimessionality after a certain point.

Static word embeddings need an aggregation function to pass from word em-
beddings to sentence embeddings. Usually, this aggregation function is a linear map
over the individual word embeddings in a sentence. We will use the “average” ag-
gregation function. Out-of-vocabulary words do not have a representation in some
static word embeddings models, so they are removed. Formally, given a collection
{w1, ...,wn} ∈ Σ+ of words in a sentence where Σ are the symbols of the language.
First we remove out-of-vocabulary words, resulting in a collection {w1, ...,wk}. Then
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we obtain the embedding as follows:

Embedding({w1, ...,wn}) =
1
k

k

∑
i=1

Embedding(wi) (6)

If k
n < 0.8, i.e., more than 20% of tokens are unknown, the sentence is discarded.

Words do not need an aggregation function as they are represented passing them
through the model.

The process by which words and sentences are represented with compatible vec-
tors is illustrated in Figure 3. Words and sentences are represented by two-dimensional
integer vectors for the sake of simplicity.

Fig. 3: Illustrative example representing words an sentences with compatible
2-dimensional vectors using Word2Vec.

4.3 Contextualized word embeddings

As shown in Section 2, contextualized word embeddings define an injective mapping
between a sequence of tokens to a sequence of vectors:

f : {w1,w2, ...,wn}→ (Rd)n. (7)

In this paradigm, each word would have a different representation depending on the
context.

More specifically, contextualizers receive a sequence of known tokens as input.
These tokens are obtained by a special tokenizer, which maps words to IDs in the
model’s dictionary. As an example, BERT uses WordPiece tokenizer in which most
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frequent combinations of the symbols in the vocabulary are iteratively added to the
vocabulary. This is useful for treating rare and out of vocabulary words, e.g., splitting
the word strawberry into straw and #berry that are more common.
By the nature of contextualizers, sentences do not need any special treatment. They
are passed directly through the tokenizer and then fed into the model. It is essential
to add that BERT supports up to 512 tokens, so any sequence above that is truncated.
In the case of words, we consider them a single word sentence and then use the same
procedure. Impressively, this way to represent words yields good results.

There are many ways to obtain words or sentence representations using contex-
tualizers. The most common approach is to average or sum the model’s last hidden
layer. In BERT, we can also use the output of the first token, known as the CLS token,
which is usually employed for text classification tasks. These aggregation methods
are used to represent both sentences and word because words can also have multiple
tokens under BERT’s tokenization scheme.

The process by which words and phrases are represented with compatible vectors
using BERT is illustrated in Figure 4. We assume that the last hidden layer of BERT is
a two-dimensional integer vector. Note that compatible vectors can be obtained either
from the CLS token representation or by averaging the vectors of the other tokens.
The last token [SEP] is discarded from the final representation.

5

love [1, 0], [2, 1], [0, 1], [3, 5][CLS], lo, ##ve, [SEP]

Input Adapted Input OutputModelTokenizer

WordPiece BERT

Average
[1, 1][1, 0]

Representation

Last hidden layer

I love you [3, 0], [3,1], [2, 2], [1, 1], [2, 0], [7, 5][CLS], I, lo, ##ve, you, [SEP]WordPiece BERT

Average
[2, 1][3, 0]

Last hidden layer

Compatible 
Vectors

Fig. 4: Illustrative example representing words an sentences with compatible
2-dimensional vectors using BERT.

5 Experiments

In this section, we report transfer learning experimental results. We divide it into
five subsections. The first subsection describes the datasets and lexicons used. Then,
we present the representation models used in Subsection 5.2. Next, Subsections 5.3
and 5.4 report sentiment experiments and discussions. In Subsection 5.5 and 5.6 we
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describe and discuss our emotion experiments. Finally, in Subsection 5.7 we conduct
a qualitative analysis of prediction errors.

5.1 Data

Our sentiment experiments require three annotated resources for training and evalua-
tion purposes, each of which coming from one of our domains: documents, sentences
(or tweets), and words.

The document domain dataset is a collection of 50,000 English reviews from
the Internet Movie Database (IMDB) dataset [26]. This dataset consists of an equal
number of positive and negative reviews, considering only the highly polarized ones.
We use the official split of this dataset, that is, 50% training and 50% test.

The second dataset is the SemEval-2014 Task 9 [45] corpus, consisting of 5,232
positive and 2,067 negative tweets annotated by Amazon Mechanical Turk. We split
the dataset stratified and randomly into 50% training and 50% testing for evaluating
the transfer learning tasks.

We consider the metaLex dataset [5] as the word domain lexicon. This resource
is built from the combination of four existing lexicons: MPQA [53], Bing Liu [23],
Afinn [36], and NRC-emotion lexicon [33] resulting in 17,271 positive, neutral and
negative words. We kept only the positive and negative words and discarded those
with conflicting polarities according to different lexicons. This results in a collection
of 10,183 annotated words. We split this lexicon using random and stratified parti-
tions of 67% training and 33% testing instances. The main properties of the three
datasets are summarized in Table 1.

Dataset metaLex IMDB SemEval 2014
Positive Instances (Train) 2,525 12,500 2,642
Negative Instances (Train) 4,295 12,500 1,007
Positive Instances (Test) 1,244 12,500 2,590
Negative Instances (Test) 2,116 12,500 1,060

Table 1: Sentiment datasets properties.

We also evaluate the task of transferring four emotion intensities (anger, fear,
sadness, and joy) between words and tweets. The annotated tweets are taken from
the WASSA-2017 Shared Task on Emotion Intensity [32]. This dataset is composed
of 7,097 tweets and is divided into 4 separate datasets, each for a different emotion:
anger, fear, sadness, and joy. Each tweet receives a real-valued score that determines
the strength of the corresponding emotion in a range between 0 and 1. These tweets
were annotated using the best-worst scaling technique. We use the official training
and testing partitions of this dataset as shown in Table 2.

Our word-level emotion labels are obtained from the NRC Affect Intensity Lexi-
con v0.5 (NRC-AIL) [34]. This lexicon contains intensity scores for four basic emo-
tions: anger, fear, sadness, and joy, rated between 0 and 1, as in WASSA, making
both datasets compatible. This lexicon was also built using the best-worst scaling
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technique, and each of its 4,192 words may be associated with multiple emotions. To
deal with this, we created independent training and testing partitions for each emotion
with a 67-33 train-test split. Table 2 features NRC lexicon partitions.

Dataset NRC WASSA
Anger Instances (Train) 994 941
Anger Instances (Test) 489 760
Fear Instances (Train) 1,183 1,257
Fear Instances (Test) 582 995
Sadness Instances (Train) 870 860
Sadness Instances (Test) 429 673
Joy Instances (Train) 849 897
Joy Instances (Test) 418 714

Table 2: Emotion datasets properties. Words in NRC lexicon may be associated with
multiple emotions.

5.2 Representation models

As discussed in Section 4, we experiment with two approaches to representing words
and sentences: static and contextualized word embeddings.

Regarding the contextualized word embeddings we use the BERT-base model in
our experiments. This model has 12 layers (transformer blocks), 12 attention heads,
and 110 million parameters in total. It was trained on the union of two text corpora:
The English Wikipedia and BookCorpus [60],

Regarding the static word embeddings, we use two Word2Vec [30] models, which
we refer to as General purpose embeddings and Edinburgh embeddings. We trained
General purpose embeddings on the same data as BERT-base (English Wikipedia
+ BookCorpus), setting the embedding dimension to 300 and the window size to 15.
The rationale for using these corpora is to be able to compare the results of Word2Vec
and BERT when both resources were built on the same data. We also use Edinburgh
embeddings, a Word2Vec model trained over the Edinburgh dataset [41] consisting of
10 million tweets. The hyper-parameters of this model were calibrated on an emotion
classification task [4] and correspond to a window size of 5 and 400 dimensions.

In Figure 5 we show a 2-dimensional visualization of the three sentiment training
datasets (IMDB, Metalex and SemEval) using the t-SNE dimensionality reduction
technique [27] for both Word2Vec Edinburgh embeddings and BERT average repre-
sentation.

Before analyzing the figure, it is important to note that t-SNE is an unsupervised
technique and therefore the 2-dimensional projections are computed without taking
the labels into account. Despite this, we can see that, particularly in the case of BERT,
negative and positive examples tend to lie in clearly separated regions. This suggests
that BERT implicitly captures sentiment better than Word2Vec. It is also worth not-
ing that words are distributed differently in the latent space than tweets and movie
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reviews. This pattern is very clear for the case of BERT, where words do not overlap
with examples from the other domains. We attribute this to the fact that words are
less affected by the averaging operator, which has the effect of canceling out extreme
values in the latent space. We will see in the next section that this is not a limita-
tion for our method, since the decision boundaries learned by our classifiers are in
many cases able to successfully separate positive and negative examples for the other
domains.

Word2Vec Edinburgh

BERT AVG

Fig. 5: 2D visualization of all sentiment training datasets projected to the same space
using t-SNE for both BERT AVG and Word2Vec Edinburgh representations. Point
colors indicate the sentiment/dataset combination associated with each example.
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5.3 Sentiment Experiments

In this subsection, we report the results of sentiment classification experiments using
static and contextualized word embeddings. We study the effect of training a logis-
tic regression classifier on different domains and then testing on words, tweets, and
movie reviews, all of them labeled by positive or negative sentiment.

We use Weka5 [18] for classification tasks, in particular the L2-regularized logis-
tic regression method implemented in the LibLINEAR [16] package.

We use three metrics to measure the performance of our binary classification
models: ROC AUC score, macro-averaged F1 score, and Cohen’s Kappa score. Table
3 shows the results of the embeddings trained over BookCorpus and the English
Wikipedia, and Table 4 shows the results using Edinburgh embeddings.

Test domain

Word Reviews Tweets

Tr
ai

n
do

m
ai

n

Word
0.949
0.881
0.7602

0.784
0.603
0.2703

0.769
0.684
0.3677

AUC
F1
Kappa

Reviews
0.799
0.735
0.469

0.915
0.836
0.6712

0.715
0.645
0.2929

AUC
F1
Kappa

Tweets
0.870
0.791
0.5824

0.794
0.740
0.4294

0.848
0.737
0.4756

AUC
F1
Kappa

Table 3: General purpose static embeddings ROC AUC, F1 and Kappa scores from
multiple training and testing domains.

Test domain

Word Reviews Tweets

Tr
ai

n
do

m
ai

n

Word
0.866
0.782
0.5672

0.785
0.336
0.0025

0.824
0.359
0.0782

AUC
F1
Kappa

Reviews
0.773
0.701
0.4008

0.857
0.776
0.5526

0.828
0.726
0.4553

AUC
F1
Kappa

Tweets
0.741
0.631
0.2821

0.763
0.590
0.2451

0.856
0.559
0.1928

AUC
F1
Kappa

Table 4: Edinburgh static embeddings ROC AUC, F1 and Kappa scores for multiple
training and testing domains.

5 https://www.cs.waikato.ac.nz/ml/weka/
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In both Table 3 and Table 4, the first column specifies the training domain of the
logistic regression. The following columns specify the target domain on which the
logistic regression model was tested.

Table 5 shows the results for both the average (AVG) and CLS BERT represen-
tations. The first column specifies the training domain, and each consecutive column
specifies a testing domain along with the corresponding representation method used
in the experiment. For instance, BERT obtained an AUC score of 0.925, a macro-
averaged F1 score of 0.848 and a Kappa score of 0.6958 when trained and tested on
the word domain using the CLS representation.

Test domain

Word
CLS

Word
AVG

Reviews
CLS

Reviews
AVG

Tweets
CLS

Tweets
AVG

Tr
ai

n
do

m
ai

n

Word CLS
0.925
0.848
0.6958

0.905
0.818
0.6368

0.543
0.483
0.0483

0.612
0.561
0.1678

0.480
0.260
-0.0047

0.638
0.589
0.1957

AUC
F1
Kappa

Word AVG
0.577
0.543
0.0895

0.959
0.892
0.7826

0.500
0.486
-0.0044

0.648
0.572
0.1995

0.543
0.237
-0.0008

0.807
0.717
0.4353

AUC
F1
Kappa

Reviews CLS
0.646
0.529
0.1586

0.913
0.802
0.6104

0.843
0.770
0.5389

0.816
0.738
0.4787

0.617
0.572
0.1429

0.831
0.725
0.4582

AUC
F1
Kappa

Reviews AVG
0.549
0.275
0.002

0.718
0.633
0.2718

0.483
0.334
0.0005

0.924
0.845
0.69

0.507
0.515
0.0397

0.759
0.679
0.3581

AUC
F1
Kappa

Tweets CLS
0.642
0.566
0.1869

0.631
0.584
0.1681

0.509
0.338
0.0032

0.551
0.486
0.0414

0.827
0.706
0.4131

0.561
0.514
0.079

AUC
F1
Kappa

Tweets AVG
0.683
0.271
0.0003

0.899
0.810
0.6199

0.512
0.458
0.0082

0.794
0.669
0.3573

0.555
0.226
-0.0003

0.930
0.836
0.6717

AUC
F1
Kappa

Table 5: BERT contextualized embeddings ROC AUC, F1 and Kappa scores from
multiple training and testing domains, varying between CLS and AVG

representations.

The AUC scores of all transfer learning models also displayed more compactly
using bar plots in Figure 6.

Finally, Table 6 shows the winner representation configuration for each task (no-
tice that, except for the results of the diagonal, all results correspond to transfer learn-
ing tasks).

5.4 Sentiment Discussion

We will start by discussing results of static word embeddings. We should recall that
a good classifier aims to maximize AUC, F1, and Kappa scores.

Both static embeddings exhibit relatively high AUC scores, i.e., Edinburgh em-
beddings have better performance at the tweet to tweet sentiment classification task
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Test domain

Word Reviews Tweets
Tr

ai
n

do
m

ai
n

Word
0.959 AVG
0.892 AVG
0.7826 AVG

0.785 Edin
0.603 GP
0.2703 GP

0.824 Edin
0.717 AVG
0.4353 AVG

AUC
F1
Kappa

Reviews
0.913 CLS/AVG
0.802 CLS/AVG
0.6104 CLS/AVG

0.924 AVG
0.845 AVG
0.69 AVG

0.831 CLS/AVG
0.726 ED
0.4582 CLS/AVG

AUC
F1
Kappa

Tweets
0.899 AVG
0.810 AVG
0.6199 AVG

0.794 GP=AVG
0.740 GP
0.4294 GP

0.930 AVG
0.836 AVG
0.6717 AVG

AUC
F1
Kappa

Table 6: Winner configuration from all models ROC AUC, F1, and Kappa scores
from multiple training and testing domains. AVG represents BERT model with

Average to Average embeddings meanwhile CLS/AVG represents BERT with CLS
to Average embeddings. GP and Edin refer to Word2Vec General Purpose

embeddings and Edinburgh embeddings respectively. An equal symbol between two
models indicated that both obtained the same score.

and General purpose embeddings have better performance at movie review to movie
review sentiment classification task. From word to movie reviews, both models have
a high AUC score. This result indicates that both embeddings have the same ability
to extract knowledge from words even though they were trained on different corpora.

Edinburgh embeddings have a better AUC score when transferring from words
to tweets. This result is expected as this model was trained over 10 million tweets
and has unique tokens for user mentions and URLs, so the test domain has a more
reliable representation. Word to tweet transfer results using static embeddings are in
line with previous AUC score results obtained by [6]. Meanwhile when transferring
from larger domains to the word domain, General purpose embeddings show a better
performance.

Almost every high AUC score in General purpose embeddings comes along with
high macro-averaged F1 and Kappa scores. Interestingly, for some transfer tasks,
Edinburgh embeddings have very low F1 and Kappa scores despite having high AUC
scores. A possible explanation for this is that the decision threshold can be shifted
when training and testing in different domains.

Our first preliminary experiments using BERT employed the CLS representation
for both the training and testing domains. However, some results were inconsistent,
as they reported negative Kappa scores and very low F1 scores, such as Word CLS
to Tweet CLS. This motivated the evaluation of different ways to represent training
and testing domain using BERT. Best results from word domain to word domain are
obtained by averaging BERT last hidden layer. This is valid in all other cases when
the source and target domains are the same.

A surprising result is that most of the best results were obtained by averaging
the last hidden layer of BERT in both training and testing domains, except in movie
reviews. Representing movie reviews with the CLS token at the train domain showed
very positive results when the testing domain was a different domain represented by



Words, Tweets, and Reviews: Leveraging Affective Knowledge Between Multiple Domains 19
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AVG/AVG AVG/CLS CLS/AVG CLS/CLS Edin GP
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Fig. 6: AUC scores for all models in all sentiment transfer learning tasks. The first 4
bars correspond to all variants of BERT.

the average representation. One possible explanation is that the CLS token somehow
manages to synthesize information better when the domain is longer.

Transferring from the word domain to the movie reviews domain is not as good as
the other way around. This behavior appears to be recurring when transferring from
smaller to longer lexical units. Based on that, we claim that BERT is better extract-
ing contextualized sentiment information from extensive domains and applying this
knowledge to smaller domains.

As a general trend, we can claim that BERT’s contextualized word embeddings
outperform static word embedding models for training and testing over the same do-
main. This is also true when transferring from a larger to a smaller domain. Word2Vec
is a worthy choice when transferring from a smaller to a larger domain.

It is also worth noting that no transfer learning model managed to outperform its
counterpart trained on the same domain. This allows us to interpret the diagonal cells
of our tables as an upper bound for all transfer learning tasks. We would like to stress
that these results should not be perceived as negative. Evidence in transfer learning
suggests that, although transfer learning can be a powerful tool for leveraging train-
ing data from other related domains, it cannot compete with the standard inductive
learning approach based on large training datasets from the target domain [28]. This
reveals to us the usefulness of having training examples from the target domain.
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However, our study focuses on the scenario where training data for the target
domain is absent and cannot be easily acquired. This is a very realistic situation, as
many companies or institutions do not have the time or resources to annotate data by
affect, but can easily obtain existing training datasets from related domains (e.g., an
existing affective lexicon).

Our results indicate that there are many positive transfer learning results that
would justify the use of our method in the absence of labeled target domain data.
For example, Table 6 shows an AUC score of 0.824 when transferring from words to
tweets using static Endinburgh embeddings, an AUC score of 0.913 when transfer-
ring from movie reviews to words using the BERT CLS/AVG representation, and an
AUC score of 0.831 when transferring from reviews to tweets using BERT CLS/AVG
representation. These scores are remarkably high if we consider that AUC scores cor-
respond to the probability of the model scoring a randomly chosen positive example
higher than a randomly chosen negative example. These results validate our hypoth-
esis that is possible to leverage affective knowledge between multiple domains by
representing textual units with compatible vectors.

5.5 Emotion Experiments

In this subsection, we report results on transferring emotion intensities between words
and tweets using static and contextualized word embeddings.

The main difference with previous tasks is that in this case we focus on a re-
gression task. Our dataset covers four different emotions: anger, fear, sadness, and
joy, and each emotion is continuously rated between 0 and 1 rather than in a discrete
space.

General purpose embeddings were not considered in this experiment based on
the previous finding that Edinburgh embeddings are more appropriate for Twitter
data. We also discard BERT’s CLS representation, due to the consistency reported by
the average representation in previous experiments. Weka along the LibLINEAR[16]
package was used to train a support vector machine regression model, setting the
SVMType parameter to L2-regularized L2-loss support vector regression (dual) with
the regularization parameter C set to 1.

We consider three metrics to measure the performance of our regression models:
Pearson Correlation (COR), Mean Absolute Error (MAE), and Root Mean Squared
Error (RMSE). Regression results for emotions anger, fear, sadness, and joy using
both BERT and Edinburgh embeddings are shown in Tables 7, 8, 9, and 10. Analo-
gously to previous experiments, the first column specifies the training domain of the
support vector machine regression. Each following column specifies the domain on
which the support vector machine regression model was tested along with the repre-
sentation method used.

Bar plots of the Pearson correlations of all emotion transfer learning experiments
are depicted in Figure 7.
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Test Domain

Word Tweet

Edin BERT Edin BERT
Tr

ai
n

do
m

ai
n

Word
0.4626
0.1494
0.1883

0.6254
0.136
0.1724

0.2526
0.1484
0.1863

0.1716
0.2115
0.2664

COR
MAE
RMSE

Tweet
0.0938
0.2003
0.2451

0.2941
0.1864
0.2296

0.4838
0.1264
0.154

0.5816
0.1215
0.1516

COR
MAE
RMSE

Table 7: Anger transfer learning between word and tweet domains using BERT and
Edinburgh (Edin) representations. Metrics shown are Pearson Correlation (COR),

Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).

Test Domain

Word Tweet

Edin BERT Edin BERT

Tr
ai

n
do

m
ai

n

Word
0.5053
0.1429
0.1784

0.6621
0.1267
0.1631

0.2937
0.1746
0.2163

0.3032
0.2138
0.2665

COR
MAE
RMSE

Tweet
0.3423
0.2056
0.2574

0.4714
0.1743
0.2184

0.5435
0.1439
0.1754

0.6374
0.1332
0.1674

COR
MAE
RMSE

Table 8: Fear transfer learning between word and tweet domains using BERT and
Edinburgh (Edin) representations. Metrics shown are Pearson Correlation (COR),

Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).

Test Domain

Word Tweet

Edin BERT Edin BERT

Tr
ai

n
do

m
ai

n

Word
0.5156
0.1491
0.1809

0.677
0.125
0.157

0.2812
0.2025
0.2501

0.4176
0.2931
0.3582

COR
MAE
RMSE

Tweet
0.3446
0.1865
0.2313

0.4644
0.2453
0.2915

0.6013
0.1454
0.1751

0.6886
0.1222
0.1535

COR
MAE
RMSE

Table 9: Sadness transfer learning between word and tweet domains using BERT
and Edinburgh (Edin) representations. Metrics shown are Pearson Correlation
(COR), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).
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Test Domain

Word Tweet

Edin BERT Edin BERT
Tr

ai
n

do
m

ai
n

Word
0.5966
0.1359
0.1675

0.5653
0.1478
0.1873

0.3587
0.1789
0.2148

0.3373
0.3322
0.3912

COR
MAE
RMSE

Tweet
0.4001
0.2256
0.2705

0.403
0.1995
0.2502

0.5708
0.1534
0.1864

0.6146
0.1421
0.1828

COR
MAE
RMSE

Table 10: Joy transfer learning between word and tweet domains using BERT and
Edinburgh (Edin) representations. Metrics shown are Pearson Correlation (COR),

Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).
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Fig. 7: Pearson correlation for all models in all emotion intensity transfer learning
tasks.
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5.6 Emotion Discussion

It is important to note that in this task the goal is to minimize the values of MAE and
RMSE, while maximizing the value of COR. Interestingly, predictive performance
differs significantly between different emotions for Edinburgh embeddings. When
source and target domains are the same, correlations for joy are as high as 0.5966 and
0.5708 against values of 0.4626 and 0.4838 obtained for anger. This may be caused
by Edinburgh embeddings not being able to distinguish anger with the same accuracy
as joy from the embedding space. Another unexpected result occurs when transferring
from tweet to words using Edinburgh embeddings. Somehow, these embeddings fail
at transferring anger, obtaining a correlation of 0.0938, opposed to 0.4001 obtained
for joy. This result suggests that there is a substantial discordance in the way anger
is expressed in tweets and words. This will be further analyzed in Subsection 5.7.

In relation to emotion experiments using BERT, the worst results are obtained
when transferring from domains with shorter lexical units than those of the target
domain, similarly to what is reported in the sentiment experiments. This is expected,
as BERT’s self-attention mechanism excels at extracting contextual information from
larger contexts. This model performs well in general, except when transferring anger
from tweets to words. This emotion seems to be difficult to capture for both repre-
sentation models.

If we compare both representation approaches, we can conclude that each ap-
proach obtains similar results to those from the sentiment experiments, with BERT
extracting better knowledge from domains with longer lexical units to shorter ones.
BERT also dominates the diagonal, so it achieves better predictions within the same
domains. Meanwhile, Edinburgh embeddings exhibit a slightly better performance
than BERT when transferring from words to tweets. This behavior seems to be re-
peated in the other emotions: BERT dominating all transfer learning experiments
excepting the word to tweet task, in which the Edinburgh embeddings are competi-
tive.

These correlations are in line with previous results obtained in [32]. We must re-
mark that we are using BERT’s base model only as a feature extractor mechanism.
A fine-tuned version on the test domain would very likely perform better in a same-
domain train-test evaluation setting. However, in our transfer learning setting we are
not allowing the model to access labeled examples from the target domain during
training. It is unclear whether fine-tuning on the train domain would lead to improve-
ments when the test domain is different, which is the main objective of this work.

5.7 Qualitative Analysis

In this subsection we perform a qualitative analysis of the classification errors made
by our transfer learning models with the aim understanding the limitations of our
approach.

Table 11 shows some examples of tweets that were misclassified by all models in
the task of transferring sentiment from words to tweets.
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Actual Predicted Tweet

positive negative
Gas by my house hit $3.39!!!!
I’m going to Chapel Hill on Sat. :)

positive negative
with J Davlar 11th. Main rivals are team Poland.
Hopefully we can make it a successful end to a
tough week of training tomorrow.

positive negative
Never start working on your dreams and goals tomorrow......
tomorrow never comes....if it means anything to U,
ACT NOW! #getafterit

Table 11: Examples of classification errors of both models in tweet prediction,
trained on words.

All these tweets contain words with strong negative sentiment, such as “tough”,
“rivals”, and “never”. We can conclude that the presence of specific negative words
can mislead models that were trained on the word domain.

As for the task of detecting the intensity of emotions, the results showed that anger
was particularly difficult to transfer from the tweet domain to the word domain. To get
further insight on this, we extracted the 10 words with the largest absolute prediction
error for both BERT and Edinburgh based models, which are shown in Tables 12
and 13 respectively.

Actual Predicted Error Word
0.818 0.293 -0.525 terrorist
0.562 0.037 -0.525 torpedo
0.939 0.41 -0.529 terrorize
0.844 0.308 -0.536 tumultuous
0.621 0.084 -0.537 theft
0.859 0.313 -0.546 tirade
0.851 0.295 -0.556 terrorism
0.825 0.26 -0.565 ruinous
0.544 -0.028 -0.572 robbery
0.862 0.227 -0.635 smite

Table 12: Prediction errors of BERT AVG representation at word anger prediction,
trained on tweets.

It is interesting to observe that the BERT model (trained on tweets) fails at pre-
dicting the anger intensity of three words derived from the same root “terror”: “ter-
rorist”, “terrorize”, and “terrorism”. When examining the training tweets, we noticed
that none of them contains words with that root. This suggests that the model did not
receive enough evidence to adequately learn the affect of these word, which resulted
in predicting lower intensities than expected.

In the case of Edinburgh, we did not notice such a clear pattern as with BERT.
We randomly took the word “unhelpful” from that list and analyzed the training

tweets that contain it. Some examples of tweets containing mentions of that word are
shown in Table 14.
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Actual Predicted Error Word
0.125 0.653 0.528 wireless
0.844 0.315 -0.529 tumultuous
0.781 0.251 -0.53 sinister
0.885 0.353 -0.532 wrath

0.03 0.57 0.54 waffle
0.219 0.765 0.546 unhelpful
0.152 0.715 0.563 underpaid
0.814 0.235 -0.579 savage
0.219 0.821 0.602 whiny
0.328 0.95 0.622 spammers

Table 13: Prediction errors of Word2Vec Edinburgh representation at word anger
prediction, trained on tweets.

Training tweets Anger
@ThomsonCares Sam- yes we have! Not helpful at all!
We need this sorting ASAP! You keep promising stuff
that doesnt happen!!!! #fuming

0.771

@lynnew69 then he said talking about wills uncontrollable
animals when moving to another link. These comments
do not help! #fuming

0.75

Zero help from @ups customer service. Just pushing the buck back and forth
and promising callbacks that don’t happen. #anger #loathing 0.854

Table 14: Tweets with the presence of words related to “unhelpful”

We observe that the predicted value of word “unhelpful” is 0.765, while the value
delivered by the human annotators is 0.219. Tweets containing the word “unhelpful”
have an intensity greater than 0.7 which is closer to the model’s prediction. This indi-
cates that for certain words there is no direct correspondence between the contextual
anger intensity expressed in a tweet and the isolated intensity of the word.

As a result of this qualitative analysis we can conclude the following:

1. When transferring from words to tweets, the presence of words with the opposite
sentiment than the target tweet can mislead the prediction.

2. When transferring from tweets to words, the absence of training tweets containing
the target word may prevent its accurate prediction.

3. The affect intensity conveyed by an isolated word can be different than its con-
textualized intensity in a sentence.

6 Conclusions

This paper has presented a novel method for leveraging affect knowledge between
three different domains: movie reviews, tweets, and words.

Our method exploits the fact that despite the apparent differences between these
domains, the sentiment and emotion label spaces are shared across them (i.e., texts
of different length can plausibly be mapped to the same affect labels). This can be
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particularly useful when training data is not available for the target domain for which
the affect analysis is intended.

We also exploit the property that both static and contextual word embeddings
can be aggregated to represent textual units of different lengths (e.g., movie reviews,
tweets, words) as compatible vectors. Consequently, a classifier trained with data
from one source domain can easily be applied to data from a different target domain.

Our results indicate that, in general, affect knowledge can be transferred between
one domain to another using our method. However, classification performance can
vary significantly depending on the choice of source-target domain pair and the rep-
resentation method. Word2Vec tends to produce more stable results than BERT and
performs relatively well in many transfer learning tasks. Word2Vec vectors trained on
Twitter data work significantly better than General purpose embeddings for tweets’
sentiment classification. Concerning BERT, we observe that BERT-derived represen-
tations can outperform WordVec in many tasks. However, these results exhibit more
variability depending on the aggregation approach used.

Another remarkable result is that, in many cases, the transfer classification results
show high scores for the area under the ROC curve (AUC) metric and low scores for
F1 and Kappa. This anomaly suggests that the decision boundary gets shifted when
moving from one sentiment domain to another. This problem could be mitigated by
adjusting the decision threshold on the target domain.

The emotion experiments results suggest that anger intensity detection is more
challenging than joy, sadness, and fear when transferring between word and tweet
domains. This decrease is caused by a mismatch in how anger is perceived in tweets
and single words.

Finally, as a general trend, we observe that affect knowledge can be easier trans-
ferred from longer to shorter domains (e.g., movie reviews to tweets or tweets to
words) than the opposite way. We attribute this to the fact that the training domain
is richer in contextual affective information in those cases. The main contribution
of this paper is a new method to leverage affective labels between diverse domains.
This approach can be especially useful for practitioners who lack the resources for
creating annotated data for their target domain.

We envision several avenues of future work. First, we plan to explore our method
with other affect labels, such as the Hourglass of Emotions [50] and hate speech.
Second, we will study how to incorporate other recently developed contextualized
models such as XLNet [57], RoBERTa [24], and ERNIE [59] into our method.
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