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Abstract Background A sentiment lexicon is a list of expressions annotated ac-
cording to affect categories such as positive, negative, anger and fear. Lexicons are
widely used in sentiment classification of tweets, especially when labeled messages
are scarce. Sentiment lexicons are prone to obsolescence due to: 1) the arrival of
new sentiment-conveying expressions such as #trumpwall and #PrayForParis, and 2)
temporal changes in sentiment patterns of words (e.g., a scandal associated with an
entity).
Methods In this paper we propose a methodology for automatically inducing con-
tinuously updated sentiment lexicons from Twitter streams by training incremental
word sentiment classifiers from time-evolving distributional word vectors. We exper-
iment with various sketching techniques for efficiently building incremental word-
context matrices and study how the lexicon adapts to drastic changes in the sentiment
pattern. Change is simulated by randomly picking some words from a testing parti-
tion of words and swapping their context with the context of words exhibiting the
opposite sentiment.
Results and Conclusions Our experimental results show that our approach allows for
successfully tracking of the sentiment of words over time even when drastic change
is induced.
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1 Introduction

Sentic computing is an interdisciplinary field for the study of sentiment and affect
in human language that complements modern statistical and neural techniques for
natural language processing (NLP) with other related disciplines such as linguistics,
common sense reasoning and affective computing [16]. SenticNet [18] is a lexical
resource that broadly reflects the spirit of this field. The core of this resource is a se-
mantic network of more than 200,000 common-sense concepts, represented by both
single words and multi-word expressions with rich semantic and affective associa-
tions. This resource enables the integration of logical reasoning into modern deep
learning models to extract complex affective/sentic patterns from texts [17].

However, static sentic resources such as SenticNet exhibit significant limitations
for their application to social media such as Twitter. First, these resources unlikely
capture the diversity of informal expressions found in Twitter, including misspelled
words, acronyms, or hashtags. Furthermore, with novel events often come novel
affect-conveying expressions, such as #NeverAgain or #LetsStopTheFlood. A static
resource such as SenticNet can only ignore these potentially highly informative new
expressions. Additionally, other existing words or expressions can change their sen-
timent abruptly, when unexpected events associated with an entity occur suddenly
(e.g., a scandal linked to a public figure or company) [4].

This paper expands on the field of sentic computing to a dynamic time-evolving
setting, proposing a new methodology for building continuously updated sentic re-
sources from Twitter streams. In particular, we focus on time-evolving sentiment lex-
icons. A sentiment lexicon is a list of words and expressions annotated according to
affective categories (e.g., “good” and “love” are examples of positive words; “hate”
and “fed up” are example of negative ones). We define a time-evolving sentiment
lexicon as a dynamic resource that maps words occurring in a stream of text or a
diachronic corpus to sentiment or affective categories. In this work we only consider
binary prediction problems: categories limited to only a positive and a negative class.
Though as discussed in Section 5, our approach could easily be adapted to work with
fine-grained emotions such as the Hourglass of emotions [61]. Every time a new word
is observed in the stream (i.e., a word that has not been included in the lexicon up to
that moment), this new word will be assigned a sentiment score and added to the lex-
icon. Moreover, every time an existing word is observed in the stream (i.e., a word
already added to the lexicon) its sentiment score can be updated. In our opinion, a
sentiment lexicon should be the basic building block of a more complex sentic com-
puting resource, and hence, a method for building lexicons incrementally essentially
lays the foundation for a dynamic version of the sentic computing field.

Our proposed methodology allows us to build and evaluate time-evolving senti-
ment lexicons from Twitter streams based on two resources that are relatively cheap
to obtain: 1) a stream of unlabeled tweets that can be freely obtained from the Twit-
ter API, and 2) a static seed lexicon, which is a small group of words annotated by
sentiment. In this work we make the assumption that the sentiment of the seed words
would not change over time.

The main idea of our proposal is to adapt the static approach for inducing Twitter-
specific sentiment lexicons proposed in [10,62] to a time-evolving setting. In those
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approaches, words from a corpus of unlabeled tweets are represented as distribu-
tional vectors [63] and a word-level sentiment classifier is trained on those vectors
[10,62]. The training examples are obtained by labeling the word vectors matching
the words of a given seed lexicon. The induction is performed by deploying the result-
ing classifier on the remaining words. In contrast to a previous approach for building
time-evolving lexicons [28], in which independent lexicons are created for different
periods of time, our approach is fully incremental and based on stream mining meth-
ods.

To adapt the static approach described above to a time-evolving setting, our method-
ology performs two actions in a stream of continuously arriving tweets: 1) calculate
incremental distributional representations of words, and 2) train an incremental word-
level sentiment classifier.

Distributional vectors or word embeddings represent lexical items such as words
according to the context in which they occur in a corpus of documents. These models
infer the meaning of a word from the distribution of the words that surround it. They
are based on the distributional hypothesis of meaning, which states that words that
occur in similar contexts tend to have similar meanings [30]. There are essentially
two main approaches for building word vectors: 1) count-based approaches that ex-
plicitly build a word-context matrix of word-word co-occurrence counts [63], and 2)
distributed methods that rely on the the internal structure of a neural network trained
on an auxiliary predictive task (e.g., predicting the center word from a context win-
dow) [51]. Theoretical studies have proven that these two approaches are equivalent
[43].

Adapting distributional models to the stream scenario is challenging because sat-
isfactory static models rely on operations that require access to the whole dataset
[44] (e.g., extracting the vocabulary from the corpus, discarding infrequent words).
Moreover, the neural networks employed in distributed approaches require various
passes over the data to properly fit internal parameters of the network. All these op-
erations are computationally prohibitive in a streaming setting. In order to satisfy the
stream mining constraints, namely that tweets can only be observed once and can-
not be stored in memory, we build our incremental word vectors using count-based
approaches. This is because count-based approaches can be more easily adapted to a
stream mining framework than neural networks. This might sound counter-intuitive,
as neural networks seem to naturally learn incrementally, but in practice they need
many incremental passes over the same data to achieve good performance.

Each dimension of our word vectors corresponds to a context, which is usually
represented as another word that surrounds the target word in a window. These di-
mensions have numerical values that represent an association between words. This
association is calculated using Positive Point-wise Mutual Information (PPMI) [63,
19], which depends on the joint probabilities of word pairs and the marginal probabil-
ities of single words. Therefore, we need to store word counts and word pair counts
in memory. Word vectors are created and updated continuously as new tweets arrive
from the stream.

Data sketching methods [6] are stream mining techniques that summarize suffi-
cient information from a stream to calculate approximate statistics with significant
gains in time and memory consumption and minor losses in accuracy. We experi-
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ment with two sketching techniques for approximating word-context co-occurrence
counts: Jenkins Hashing [36] and Brown clusters [15].

The dynamic lexicon is built by training a linear classifier on the word vectors.
An incremental classifier can evolve and adapt to new training instances as the stream
of data flows. Also, incremental classifiers generally scale much better than a batch
learning approach for training and testing on large amounts of data. The linear classi-
fier is trained incrementally using stochastic gradient descent (SGD) [9] minimizing
logistic loss. The word vector’s dimensions are used to form the attribute space of
the classifier and the words from the seed lexicon are used to label the training in-
stances. Each time a word is observed in the stream, its vector is updated. If the word
is part of the seed lexicon, then the incremental classifier is trained/updated using the
corresponding vector and label, otherwise the word is reclassified and its entry in the
dynamic lexicon is updated using this newly predicted sentiment score.

The research hypothesis of this work is that the Twitter signal is informative
enough to accurately track the sentiment of words over time without human interven-
tion. We postulate that as a consequence of the distributional hypothesis of meaning,
the sentiment of new words (e.g., hashtags) will be captured by its context vector
(after having seen the word a certain number of times), and hence will be classified
correctly [13]. Furthermore, for words exhibiting sentiment drift (e.g., a company
name involved in a scandal), their word vectors will change and be reclassified to
their new sentiment at some point.

There is no obvious strategy to create a benchmark dataset in which sentiment
drift of words can be clearly observed and evaluated1. Therefore, we propose a mech-
anism for generating synthetic data in which this condition can be manipulated. The
synthetic dataset is used to evaluate the lexicon induction process in scenarios of sen-
timent drift. Our sentiment drift generator works by randomly picking some words
from a testing partition of the seed lexicon and swapping their context with the con-
text of words exhibiting the opposite sentiment.

The main contributions of this paper are:
1. A new methodology for training incremental sentiment lexicons from Twitter

streams using incremental word vectors and incremental classifiers.
2. A new technique for evaluating incremental lexicons under scenarios of drastic

sentiment drift based on creating synthetic sentences.
This article is organized as follows. In Section 2, we provide a review of related

work. The proposed methodology for building and evaluating incremental sentiment
lexicons is provided in Section 3. In Section 4, we present the experiments we con-
ducted to evaluate the proposed approach and discuss results. The main findings and
conclusions are discussed in Section 5.

2 Related Work

This section discusses related work in four subsections. The first part reviews senti-
ment in a time-evolving setting from a general point of view. The second part is more

1 We have to keep in mind that we are assuming the training words do not change their sentiment over
time.
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specific and discusses works that build temporal lexicons as well as works studying
the semantic change of words. The third subsection tries to connect the dots between
our proposed approach and the sentic computing paradigm. Finally, the fourth sub-
section provides a discussion on why the proposed method is novel and different from
previous approaches.

2.1 Time-evolving Sentiment Models

The first study of sentiment from a stream data mining point of view was [4], where
three fast incremental learning algorithms for tweet-level sentiment classification
were compared: 1) Multinomial Naive Bayes, 2) Stochastic Gradient Descent (SGD)
linear classifer, and 3) the Hoeffding Tree. Tweets were represented using unigram
features and automatically annotated using positive and negative emoticons. This an-
notation approach is usually referred to as distant supervision [26]. The Massive On-
line Analysis (MOA) framework [7] was used for the experiments using prequential
accuracy and the kappa statistic for evaluation. The authors argued that the kappa
measure is more suitable for unbalanced streams. The results indicated that on the
one hand, Hoeffding trees are not suitable for high-dimensional streams, and on the
other, an SGD-trained linear model and Naive Bayes perform comparably for this
problem. A very strong assumption made by this model is that sentiment labels are
available across the entire stream. The authors explored the variation of the SGD
coefficients associated with some words during the training process. The model’s
coefficients determine the influence of the presence of a word on the prediction of
negative and positive classes. The argument was that tracking these variations can be
an efficient way of detecting changes in the population’s opinion of an entity (e.g., a
topic, a person).

Bifet et al. developed MOA-TweetReader in [8] as an extension of the MOA
framework. This extension allows users to read tweets in real time, store the fre-
quency of the most frequent terms, detect change in the frequency of words, and
perform sentiment analysis in the same way as the aforementioned work.

Apart from using emoticons in a distant supervision fashion, emoticons have also
been incorporated into existing lexicons yielding significant improvements in classi-
fication accuracy [33].

In [35] the temporal dynamics of tweets associated with online retailers in the
UK is analyzed using three types of techniques: 1) sentiment analysis, 2) time series
analysis, and 3) topic modeling. Sentiment analysis is used to classify tweets to sen-
timent categories, time series analysis techniques are performed to explain sentiment
variations of these tweets over time, and finally topic models are used to identify the
topics that caused these deviations.

One of the main reasons for developing time-evolving sentiment models is the
quality deterioration of static sentiment classifiers over time. This problem was em-
pirically studied in [22]. Sentiment classifiers were trained using training and testing
data from different time periods. The results indicated a significant decrease in the
classification performance as the time difference between the training and the testing
data was increased. There are three approaches to this problem in [57]: 1) using a
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weighing scheme for continuous vocabulary updating, 2) adding sentiment lexicons
to the feature space, and 3) using distributed word vectors. The results show that
these approaches can successfully reduce the deterioration of sentiment classification
results over time.

2.2 Temporal Lexicons and Semantic Change Detection

A model for creating domain-specific opinion lexicons is proposed in [28], where
words from a source corpus of unlabeled text data (not necessarily tweets) are rep-
resented by embedding vectors. A square matrix of size V ×V (V is the vocabulary
size), is built where each entry (i, j) corresponds to a smoothed PMI score of the
word pair wi,w j based on co-occurrence counts within fixed-size sliding windows of
text. This matrix is projected onto a low-dimensional space using singular value de-
composition (SVD) and used for building a graph of word associations. Each word in
the graph is connected with its k most similar words according to cosine similarity in
the low-dimensional space. The sentiment induction is carried out by propagating the
known polarities of a seed lexicon to the remaining nodes in the graph using random
walks. The model is used for creating domain-specific sentiment lexicons for differ-
ent Reddit communities. Examples exhibiting different polarities in different com-
munities are the words “soft” and “animal”, which are positive in a community ded-
icated to female perspectives and gender issues, but negative in sports. Conversely,
the words “crazy” and “insane” exhibit contradictory polarities in both domains. The
same approach was also used for studying the evolution of opinion words by building
lexicons from documents from the Corpus of Historical American English2 written
in consecutive decades between 1850 to 2000. The authors found that several words
have changed their polarity over time, for instance the word “terrific” has changed
from a negative to a positive polarity in the last few decades.

Another approach to creating domain and time-specific lexicons is proposed in
[27]. This work argues that manually created lexicons cannot be readily applied to a
specific domain or time period because they ignore domain-specific sentiment terms.
Their approach consists of extracting relevant terms associated with the target do-
main or time period from news sources. The sentiment of each term is determined by
collecting tweets containing the term and averaging their sentiment. The sentiment of
these tweets is obtained using an ensemble of various sentiment analysis systems.

Another problem that is closely related to incremental sentiment lexicon induc-
tion is the tracking of temporal changes in word meaning or the study of “semantic
shifts”. The relationship between these two problems comes from the observation
that sentiment can be viewed as a sub-dimension of semantics [14].

A pioneering work tracking semantic change using word embedding models was
carried by out Kim et at. [39]. The approach consists of training year-specific neural
word vectors from the Google Books Ngram corpus between year 1900 to 2009 and
to identify words whose meanings have changed significantly. The word vectors of
each year are initialized with the vectors of the previous one.

2 http://corpus.byu.edu/coha/
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Hamilton et at. [29] conducted a similar study for quantifying semantic change
over time by training word vectors on six historical corpora. The study revealed two
statistical laws of semantic evolution. The first one is called the law of conformity and
suggests that the rate of semantic change scales with an inverse power-law of word
frequency (i.e., frequent words are less likely to change). The second one, called the
law of innovation, suggests that words that are more polysemous have higher rates of
semantic change regardless of their frequencies.

A problem with comparing word vectors trained on different time periods is that
those vectors are not necessarily compatible. This is a consequence of the stochastic-
ity of neural word vectors: neural embedding models are likely to produce different
vectors on different runs even if they are trained on the same data. This situation
strengthens for models trained on different corpora (e.g., corpora from different peri-
ods of time) [42].

Kulkarni et al. [41] suggested aligning embedding models from different peri-
ods using linear transformations in order to calculate similarities between words in
different periods. However, this operation is computationally prohibitive in a stream
mining setting.

There have been some attempts to build incremental word vectors using neural
networks [38], [49], but none of these methods has been studied in the context of
incremental sentiment lexicons.

The semantic shift detection problem should be evaluated on ground-truth data
comprised of human-annotated semantically shifted words. However, such a resource
is rarely available, and many evaluations have been conducted on small datasets
formed by a handful of examples [42]. This is not sufficient for evaluating large-scale
semantic drift models.

The idea of creating synthetic data for evaluation purposes was explored by Rosen-
feld and Erk [56]. Their approach creates synthetic words by merging two real words.
In the merging process the meaning of the synthetic word shifts from the meaning one
of the source words to the other.

We refer the reader to [42] for a comprehensive review of the state of academic
research related to diachronic word embeddings and semantic shift detection.

2.3 Sentic Computing

The sentic computing paradigm focuses on a semantic-preserving representation of
natural language concepts and on sentence structure [16]. Many dimensions of the
sentiment analysis problem can be studied through the eyes of this paradigm, includ-
ing the study of negation [64,32], the study of sentiment with respect to the entities
mentioned within a sentence and its corresponding aspects [48,58,47], or multilin-
gual approaches [21,34].

In relation to the process of automatically inducing sentiment lexicons or other
lexical resources for sentiment analysis, apart from the works discussed above that
use distributional word vectors, there are alternative approaches based on semantic
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networks and knowledge-graphs such as WordNet [52] and ConceptNet3 to be dis-
cussed below.

In [24], a supervised classifier is trained using a seed of labeled words that is ob-
tained through expansion based on synonyms and antonyms. For each word, a vector
space model is created from the definition or gloss provided by the WordNet dic-
tionary. This representation is used to train a word-level classifier that is used for
lexicon induction. An equivalent approach was applied later to create SentiWordNet4

[2,25]. In SentiWordNet, each WordNet synset or group of synonyms is assigned
to classes positive, negative and neutral, with soft labels in the range [0,1]. In [31],
various techniques are explored to exploit the semantic relationships of existing lex-
ical resources for automatic sentiment lexicon creation. These techniques include a
PageRank-based method and a machine learning approach.

SenticNet5 is a well-known commonsense lexical resource for sentiment analysis
built from concept-level semantic networks. In this resource, multi-word concepts
are labeled according to both affective and semantic information. Various techniques
have been used in the different versions of SenticNet. The first two versions were
based on graph-mining and dimensionality reduction techniques, while most recent
versions integrate multiple knowledge sources establishing paths between concepts
and make use of context embedding models [18]. The sixth and latest version of
SenticNet integrates logical reasoning within modern deep learning architectures via
an ensemble of symbolic and subsymbolic AI tools [17]. A salient example of how
deep learning architectures can be integrated with commonsense knowledge, is the
Sentic LSTM [47], which extends the LSTM cell to include a separate output gate
that interpolates token-level memory with concept-level input.

2.4 Discussion

In this section, we reviewed several techniques for sentiment analysis, with particular
attention to methods for inducing sentiment lexicons and tracking sentiment change
over time. To the best of our knowledge, this is the first work in which an incremental
word-sentiment classifier is trained on time-evolving word-vectors for building incre-
mental lexicons. Moreover, this is also the first work in which large-scale synthetic
data is created for evaluating the detection of word-level sentiment drift.

3 Proposed Methodology

The sentiment of words on social media sites like Twitter can change dramatically.
This fact was highlighted in a study centered on the dynamic nature of words [60].
The study shows the case of the word “ukrop” as an example, which changed its
meaning from “dill” to “Ukrainian patriot” during the Russian-Ukrainian crisis, de-
veloping a more negative connotation in time.

3 http://conceptnet5.media.mit.edu/
4 http://sentiwordnet.isti.cnr.it/
5 http://sentic.net/
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We postulate that in order to efficiently work with these types of changes, a dy-
namic lexicon must adapt quickly to identify changes in distribution using an incre-
mental approach. This is the basis of our proposed methodology for building time-
evolving sentiment lexicons from a stream of tweets, which is described in detail in
this section. The proposed process is illustrated in Figure 1, and summarized in the
following steps:

1. Connect to a stream of continuously arriving text (e.g., Twitter).
2. Every time a new tweet arrives, a sliding window of W words centered on a target

word is shifted across the content.
3. The word vector associated with the target word is updated according to its con-

text. This process implies updating word-context counts and computing PPMI-
based associations.

4. If the target word is new, a new vector associated with this word is created.
5. If the target word is contained in the seed lexicon, the incremental classifier is

updated/trained using the target word vector and the lexicon’s sentiment as the
gold label.

6. If the target word is not contained in the lexicon, its sentiment is estimated using
the classifier and the dynamic lexicon is updated.

Incremental word-context matrix

love positive

hate negative

      Seed lexicon

word c1 c2 c3 c4 c5

beer 1.3 0.8 2.6 1.6 0.6

dislike 1.1 4.2 1.6 0.8 0.3

hate 1.0 4.1 1.4 0.9 0.2

I 3 0 0 1.2 2.3

like 2.2 2.1 1.8 0 0

love 2.3 2.0 1.7 0.1 0

Mondays 1.7 3.4 4.2 0 1.2

I love beer

I like beer

I hate Mondays

I dislike Mondays

Stream of tweets

       update

    Incremental classifier

like positive

dislike negative

      Dynamic lexicon

       train
       update

Fig. 1 Dynamic lexicon induction process. The incremental classifier is illustrated with the logo of MOA
[7], a stream mining software. The example shows two pairs of words that occur in the same contexts (love,
like) and (hate, dislike) receiving the same word vectors. However, only one word in each pair belongs to
the seed lexicon. Consequently, the two unknown words are classified with the lexicon’s sentiment of their
counterparts.

The key parts of the methodology are described in the following subsections. The
mechanisms studied to build time-evolving word vectors are described in Section 3.1.
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The incremental word-level sentiment classifier is described in Section 3.2. The eval-
uation framework is described in Section 3.3.

The MOA[7] framework comprises of a large collection of tools for the analysis
of online and offline data streams. MOA’s Java API was used for implementing the
word vectors, the incremental classifier and the various evaluation methods.

3.1 Time-evolving word-vectors

The Distributional Hypothesis [30] states that words occurring in similar contexts
tend to have similar meanings. This hypothesis is exploited in our method for in-
ducing time-evolving sentiment lexicons. To this end, words are represented by in-
cremental distributional vectors that are projected onto a sentiment space using an
incremental classifier. Distributional vectors [63] are used for representing lexical
items such as words according to the context in which they occur in a corpus of doc-
uments or tweets. In other words, distributional models infer the meaning of a word
from the distribution of the words that surround it.

The most common approach for building distributional vectors of words in a static
setting is the word-context matrix [63]. This matrix has dimensionality V ×C (V
and C are the number of different words and contexts), and each cell (i, j) is a co-
occurrence based association value between a target word wi and a context c j cal-
culated from a corpus of documents. Contexts are usually represented by the words
surrounding the target word in a window. The window length is a user-specified pa-
rameter that is usually between 1 and 8 words on both the left and the right sides of
the target word, i.e., the total contexts are usually between 3 and 17 words. Whereas
shorter windows are likely to capture syntactic information, longer windows are more
useful for representing meaning [37]. The associations between words and contexts
can be calculated using different approaches such as: co-occurrence counts, positive
point-wise mutual information (PPMI), and the significance values of a paired t-test.
According to [37] the most commonly used measure of these three is PPMI. This
measure is a filtered version of the traditional PMI measure in which negative values
are set to zero.

PMI alone calculates the log of the probability of word-context pairs occurring
together over the probability of them being independent:

PMI(w,c) = log2

(
P(w,c)

P(w)P(c)

)
= log2

(
count(w,c)×D

count(w)× count(c)

)
(1)

where D corresponds to the total number of tokens in the corpus. Negative PMI
values suggest that the two words co-occur less often than they would by chance.
These estimates are unreliable unless the counts are calculated from very large cor-
pora [37]. PPMI corrects this problem by replacing negative values by zero:

PPMI(w,c) = max(0,PMI(w,c)) (2)

We next describe how to implement a word-context matrix with PPMI scores in-
crementally. We identify the following requirements to carry out this implementation:
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1. Each tweet can only be processed once.
2. The calculation of counters required for computing PPMI must be incremental:

count(wi,c j),count(wi), count(c j), and D.
3. The model must deal with the fact that the vocabulary V and the context space C

are dynamic i.e., unknown beforehand.

Our implementation is based on the Streaming PMI algorithm proposed by Durme
et al. [23]. The vocabulary size V , the context space C (which defines the number of
columns in our vectors), and the window size W (W words to the left and W words
to the right) are the parameters of the model. Consequently, the number of word
vectors maintained in memory is restricted to V and the number of contexts words
is limited to C. Our dynamic word-context matrix is represented as a sparse matrix
implemented with type-specific dictionary data structures from the fastutil Java Li-
brary6. These dictionaries are used to store and maintain all the counters required for
computing PPMI. Each tweet in the stream is tokenized, and then a sliding window of
2W tokens is shifted across the whole sequence. The window is centered on a target
word w and all the surrounding tokens within the window are considered as the con-
text tokens c1, . . . ,c2W

7. Unseen target words and contexts are dynamically allocated
in the sparse word-context matrix upon arrival. For existing words and contexts the
corresponding counters are updated accordingly.

We consider three approaches for representing contexts. In the vanilla version of
our model (referred to as “No-Hashing”), context tokens are words. Further in this
section, we describe other variations in which the context space is reduced using
equivalence classes between contexts.

Data: tweets, window size W , vocabulary size V , context size C
Result: PPMI Matrix M
Initialize PPMI Matrix M of size V ×C;
D← 0;
while tweet in Data Stream do

tokens← tokenize(tweet);
for each w in tokens do

D← D+1;
c1, . . . ,c2W ← getContexts(w,tokens);
updateContextMatrix(w,c1, . . . ,c2W );
for each c j in c1, . . . ,c2W do

PPMI(w,c j)← max
(

0, log2

(
count(w,c j)×D

count(w)×count(c j)

))
;

end
end

end
Algorithm 1: Incremental PPMI word-context matrix building process.

Algorithm 1 describes the process of calculating and storing PPMI values for
word-context pairs. The ‘getContexts’ function returns the column indexes of the 2W

6 http://fastutil.di.unimi.it/
7 It is important to remark that the target word w is excluded from the context window c1, . . . ,c2W . For

example, for the sentence “I like my nice dog”, target word w = “my”, and window size W = 2, then the
context words c1,c2,c3,c4 (2W = 4) would be “I”,“like”,“nice”,“dog”.
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words surrounding target word w8. The ‘updateContextMatrix’ function increments
counters (count(w,c j),count(w), count(c j)) in the context matrix for the neighbor-
ing words in the window of size W . These calculated PPMI values are then used as
attributes or features to train the incremental classifier described in Section 3.2.

To keep memory usage low, there is a maximum number of words and contexts
that can be stored in memory defined by parameters V and C. There are various
approaches to deal with new arriving words and contexts once the maximum number
of words and contexts have been allocated. A simple approach is to either ignore
them, or to allocate them into special cells for unknown tokens. Alternatively, we
can keep in memory the k most frequent words using the Space-Saving algorithm
[50]. We next describe the sketching techniques we employ to reduce the number of
contexts based on equivalence classes.

The first approach, which is based on the work of [55], is to hash context words
into a fixed number of buckets equal to the context size C. Thereby, any possible
context word will be mapped to one of the matrix’s columns. There is a downside to
this: unrelated contexts could be merged into the same bucket affecting the represen-
tation power of the corresponding column. For each context word, the corresponding
context bucket (or matrix column) c j is obtained using the Jenkins hash function
[36] and the modulo operation (ci← hash(token)%C). We implement this procedure
within the ‘getContexts’ function from Algorithm 1. The Jenkins hash function has
been shown to have a low collision rate for short words [55].

The second sketching technique we explore in this paper consists of using pre-
trained word clusters. The clusters are trained from a corpus of 56,345,753 tweets9

using the Brown clustering algorithm [15], which produces hierarchical clusters by
maximizing the mutual information of bigrams. These clusters have been shown to
be useful for part-of-speech tagging of tweets [53].

The clusters are used analogously to the hashing function from the previous
method. We replace the hash values by the cluster IDs of the context words. The
context size is equal to the number of clusters, which is 1,000 in this case. Context
words that are not associated with any cluster are ignored. It is important to remark
that even though the clusters are calculated in a static fashion, our word vectors are
dynamic: when the distribution of a word changes it will start co-occurring with other
word-clusters and consequently, its vector will change. In the same way, words that
are not part of the cluster set will receive their own vector as long as they co-occur
with words from the cluster set.

The process described above was implemented as a MOA stream generator. Es-
sentially, the generator converts a stream of tweets into another stream of word vec-
tors that can be fed into any of MOA’s incremental classifiers. The three variants
of contexts in our method: No-Hashing, Jenkins Hashing, and Brown clusters, are
implemented as options in our stream generator.

8 The method can return less than 2W words for out-of-range positions.
9 CMU TweetNLP - http://www.cs.cmu.edu/~ark/TweetNLP/
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3.2 Incremental Learning

An incremental classifier is a supervised model that can learn from new training in-
stances without needing to be retrained on the entire training set from scratch. We
use incremental learning to train an adaptive word-level classifier that maps our word
vectors into a unidimensional sentiment variable. Our training instances are obtained
from a seed lexicon formed by positive and negative words. Every time a word from
the seed lexicon is observed, the classifier is updated with a new training instance
formed by the current vector of the word and the label provided by the lexicon.

Technically speaking, our implementation of word vectors would allow us to use
any incremental classifier provided by MOA. However, we choose binary logistic
regression because of: 1) its scalability to high-dimensional sparse data, and 2) the
probabilistic interpretation of its outcome.

In logistic regression, the classifier’s output is transformed using the sigmoid
function to the range [0,1], and is interpreted as the conditional probability of the
class given the attribute vector P(y = 1|x) i.e., the probability of a word being posi-
tive given its context vector.

Let x be a word vector, and y be the ground-truth sentiment of that word according
to the seed lexicon (1 if is positive and zero otherwise), then the word’s sentiment ŷ
is estimated with the following linear model:

ŷ = σ( f (x)) =
1

1+ e−x·w+b

The weight vector w and the bias term b are the parameters of the model. The
model’s weights determine how strongly a particular context influences the prediction
of negative and positive sentiment.

A logistic regression is trained by minimizing the logistic loss function with an
L2 penalty:

Llogistic(ŷ,y) =−y log ŷ− (1− y) log(1− ŷ)+
λ

2
||w||2

This loss function is essentially calculating an error rate based on comparisons
between model’s predictions and expected outcomes. The regularization term pre-
vents the parameters from taking large absolute values, in order to avoid over-fitting.
This makes our model more robust to noise: mislabeled words in the lexicon. Our ap-
proach assumes that the majority of the words from the lexicon are labeled correctly
and unlikely to change its sentiment over time.

As described below, our logistic regression is trained incrementally using stochas-
tic gradient descent (SGD). All the parameters of the model (w,b) are randomly ini-
tialized and tuned iteratively with the help of the training words from the lexicon.
The classifier makes predictions using the current values of the internal parameters,
and computes gradients for these parameters with respect to the loss estimate to move
or update the parameters in the opposite direction of the gradient in proportion to a
learning rate η .

More specifically, for each training word (x,y) the loss L is calculated with cur-
rent parameter values and updated with the following rule: wi← wi−η

∂L
wi
(ŷ,y) (for
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all parameters). In our experiments we set the learning rate and the regularization
parameters to 0.01 and 0.0001 respectively. These values are the default parameter
values of MOA’s SGD implementation, which were also used in previous studies [11,
12]. Therefore, our model is capable of predicting the sentiment of a word at any
time, and adapt itself to changes in the sentiment pattern.

3.3 Evaluation

In order to evaluate our approach we divide our seed lexicon into two sub-partitions,
training and testing, and perform an incremental hold-out evaluation [6]. For each
token in the stream, the corresponding word vector gets updated as described in Sec-
tion 3.1. If the word is part of the training lexicon, then the word vector and the label
are used to train/update the incremental classifier. Otherwise, if the word belongs to
the test lexicon, a sentiment prediction is obtained by deploying the current classi-
fier on the word vector, which is then compared against the actual class. Algorithm 2
exhibits a summary of this process.

Data: tweets, training seed lexicon, testing seed lexicon
while Tweet T in Data Stream do

for each token t in tokens do
updateContextCounters(t,T );
updatePPMIValues(t,T );
if token ∈ train seed lexicon then

trainClassifier(PPMI(t),label(t));
else if token ∈ test seed lexicon then

updateEvaluator(PPMI(t),label(t));
end

end
Algorithm 2: Training and evaluation process.

We report accuracy and the kappa statistic as evaluation metrics. Kappa is con-
sidered as a more sensitive measure for quantifying the predictive performance of
streaming classifiers [4,6], because of its robustness against class imbalance. It mea-
sures how closely the predictions made by the classifier match with the gold standard
labels, while controlling for the instances classified by random chance.

kappa = (totalAccuracy− randomAccuracy)/(1− randomAccuracy) (3)

Kappa values range from -infinity to +1. A 0 value would suggest that the predic-
tions are equal to that of a random classifier. Any kappa value less than 0 indicates
that the predictions by the classifier are worse than that of a random classifier. A
kappa value of 1 means that the class label predictions of the trained classifier are
perfectly aligned with the actual labels of the instances.

Another important concern when evaluating stream classifiers is how to aggre-
gate the values of the evaluation metric over time. We consider three aggregation
approaches, all of them implemented in MOA, that are described below:
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– Simple evaluator: performs basic incremental evaluation by averaging the value
of a metric over time.

– Fading Factor evaluator: updates evaluation results using a smoothing factor in
which recent examples are weighted higher than the older ones. In our experi-
ments we set the fading factor parameter to 0.999.

– Reseting evaluator: resets evaluation results after a pre-defined number of test
instances. In our experiments, we set this value to 10,000.

The parameter values of the above settings correspond to the default MOA values.

3.3.1 Non-stationary Evaluation

The sentiment of the test words in the evaluation framework described above is static.
Even if our model can detect a change in sentiment of words that are not part of
the test lexicon, this would not be reflected in our evaluation metrics. This poses a
limitation on studying the ability of our dynamic lexicon to adapt to a drastic change
in the sentiment of words.

As discussed in Section 2 the availability of ground-truth evaluation data for the
task of semantic change detection is fairly limited. The most comprehensive dataset
created so far for this task was developed for SemEval 2020 Task 1 [59], which con-
sists of four pairs of corpora spanning two different periods of time. Each corpus pair
is written in one of the following four languages: German, English, Swedish, and
Latin, and the gold data consists of a list of target terms for each language with bi-
nary and ordinal labels that indicate the degree of semantic change of the target term
between the two periods of time.

However, this dataset is not suitable for our task. First, in our work we focus on
sentiment change, not semantic change, and second, we focus on detecting sponta-
neous change in real time, which is far more complex than detecting change between
two discrete time periods.

Unfortunately, creating ground-truth data with real-time word-level sentiment
change would require an enormous amount of annotation effort and linguistic knowl-
edge, which is beyond our current capabilities. Consequently, we decided to create
synthetic data in which our object of study (i.e., spontaneous sentiment drift) can be
controlled and evaluated accordingly.

In our mechanism, we introduce a drastic change in sentiment in a portion of the
test lexicon to monitor its effect on the performance of the incremental sentiment
classifier. We add synthetic tweets to our stream where a percentage of tokens was
replaced with other tokens of opposite sentiment. This is done after an initial learning
period in which a predefined number of tweets is processed without inducing change.

For example, in the event of the generator simulating sentiment drift of the word
“love” from positive to negative, it will proceed to generate tweets in which the word
love occurs in the context of a negative word such as “hate”, e.g., the tweet “I hate
you, I regret that I met you” would be replaced to “I love you, I regret that I met you”.
Since evidence suggests that the sentiment of a word is determined by its context [13],
we believe that a good dynamic lexicon should be capable of detecting this change
(i.e., classifying the word to its new sentiment class) in a timely manner.
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The process is described in more detail below. The drift generator receives a cor-
pus of chronologically ordered tweets and the test lexicon as input. Other parameters
of the generator are the fraction of words to be swapped f and the time of the drift d
measured by number of tweets. For example, if f is 0.4 and d is 1,000, after seeing
1000 tweets, 40% of the test words will be paired with words with the opposite senti-
ment and their polarities will be exchanged. For all subsequent occurrences of those
word pairs, they will be swapped with each other in the content of the tweets.

In order to preserve the grammatical correctness of the synthetic sentences, only
adjectives from the test lexicon are considered as candidates for replacement10. They
are identified using the POS tagger from the NLTK library11. We prioritize frequent
adjectives for replacement to ensure that a sufficient number of inverted occurrences
are observed in the remainder of the data stream, and also only consider pairs of
words of similar frequency for the exchange to keep the training class distribution
roughly balanced across the full stream.

4 Experiments

In this section, we report the experimental results divided into three parts. The first
part describes the data, the second part shows experimental results using a fixed test-
ing lexicon, and the third part shows results with induced change.

4.1 Data

Our experiments require a collection of chronologically ordered tweets to represent a
stream of tweets. We take a collection of 2 million English tweets from the Edinburgh
corpus (ED) [54]. This corpus is a general purpose collection of 97 million tweets in
multiple languages collected with the Twitter streaming API12 between November
11, 2009 and February 1, 2010.

We consider the AFINN-111 lexicon [1] as the seed lexicon. This resource is
formed by 2,477 positive and negative words scored from 5 to -5. It includes slang,
obscene words, acronyms and Web jargon. A binary prediction problem was gener-
ated by only using the sign of the numeric sentiment scores. We split the seed lexicon
randomly into training (70%) and testing (30%) sets for evaluating the supervised
learning process.

4.2 Experiments with a fixed test lexicon

In this section we report classification experiments using a fixed test lexicon as de-
scribed in Algorithm 2 with the data reported above.

10 An additional reason to focus on adjectives is that they are the most important class of opinion words
[45].

11 https://www.nltk.org/
12 https://dev.twitter.com/streaming/overview
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For all the experiments, the SGD classifier from the MOA package was used with
a learning rate of 0.01. The loss function for the classifier was set to ‘Log’ loss in
order to obtain probability distributions for prediction classes as explained in Sec-
tion 3.2. These probability values will be used in later experiments when analyzing
the change in sentiment of individual words.

The control variables that we manipulate throughout our experiments are:

– Context type: we experiment with three types of contexts as explained in Sec-
tion 3.1: No-Hashing, Jenkins Hashing, and Brown clusters.

– Vocabulary Size (V ): the number of unique word vectors stored in memory. Re-
ducing the size of the vocabulary results in a reduction of processing time. Exper-
iments were performed with vocabulary sizes of 10,000 and 100,000.

– Context size (C): represents the number of attributes used to train the classifier.
Increasing the context size would also increase the size of the context matrix
and the learning time for the classifier. Experiments were performed with various
context sizes from 100 to 10,000. When using Brown clusters as the context type,
the context size is fixed at 1,000, which is the total number of word clusters.

– Window length (W ): is the number of neighboring tokens considered as the con-
text of a token for generating the Word Context Matrix. Experiments were con-
ducted using windows of lengths 2, 3 and 4.

Classification performance of the best three configurations for each context type
using a simple evaluator (i.e., evaluation metrics are averaged over time) is shown in
Table 1.

Vocabulary Size Context Size Window Size Context Type Final Accuracy Final Kappa
10,000 500 3 Jenkins Hash 67.19 0.3279

100,000 1,000 4 Jenkins Hash 66.89 0.3229
100,000 10,000 3 Jenkins Hash 75.80 0.4656
10,000 1,000 4 No-Hashing 71.32 0.3779
10,000 1,000 3 No-Hashing 70.51 0.3527

100,000 10,000 3 No-Hashing 78.08 0.5449
10,000 1,000 2 Brown Clusters 72.99 0.4336
10,000 1,000 3 Brown Clusters 67.79 0.3557
10,000 1,000 4 Brown Clusters 68.42 0.3529

Table 1 Summary of results using a simple evaluator. Best results for each context type are marked in
bold.

From the table we can see that increasing the context size yields improvements
in the performance of Jenkins Hashing and No-Hashing configurations. This shows
that high dimensional contexts are useful for capturing the semantics of words and
suitable for SGD training. We believe that the reason No-Hashing outperforms Jenk-
ins Hashings is that the latter tends to merge unrelated contexts into the same cells,
which can confuse the classifier. However, Jenkins Hashing’s results are competitive
and have the advantage of being able to incorporate unlimited new contexts into the
vector, unlike No-Hashing, which discards new contexts once all the context columns
have been allocated. Brown clusters exhibit similar performance to Jenkins Hashing.
A noteworthy property of Brown clusters is that they have achieved their best per-
formance using shorter window (W = 2). However, since the approach requires the
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Fig. 2 Kappa values over time with a simple evaluator.
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Fig. 3 Kappa values over time with a reseting evaluator and a fading factor evaluation.

expensive process of pre-training word clusters in a batch setting, we do not see sig-
nificant benefits from their use.

When analyzing stream classifiers, it is important to analyze how classification
performance develops over time. Figure 2 shows the learning curves of the best Jenk-
ins Hashing and No-Hashing configurations. Because the simple evaluator averages
performance over time, it cannot be used to observe short-term fluctuations.

Evaluation schemes that are more suitable for inspecting how performance varies
across time are the reseting and the fading factor evaluator described in Section 3.3.
Figure 3 shows the learning process of the best configuration using Jenkins Hashing
with those schemes.
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Fig. 4 Accuracy over time using the Fading Factor Evaluator. Experiments performed with parameters -
Vocabulary Size - 100,000, Context Size - 10,000, Window Size - 3, Jenkins Hashing - Enabled.

4.3 Experiments with induced change

In this section we follow the non-stationary evaluation framework presented in Sec-
tion 3.3.1 to study how our model behaves in scenarios of drastic sentiment change.
We consider the best configuration using Jenkins hashing (V = 100,000, C = 10,000,
and W = 3) for these experiments.

The time of the drift d, that is the point at which the change is introduced, lies in
the middle of the training. As for the fraction of words from the test lexicon to swap
f , we experiment with values of 0.3 and 0.5.

The graphs in Figure 4 show classification accuracy over time using a fading
factor evaluator for the two values of f . The red line on the graphs shows the point at
which the change was introduced. After the change, each graph shows classification
accuracy with and without change.

We can observe that accuracy decreases after the change is induced in both sce-
narios. The accuracy of the experiment with 30% of change drops to less than that
of the experiment with 50% change (Graph 2 in Figure 4). We also observe that ac-
curacy tends to recover after the drop. This validates the hypothesis that our model
is able to adapt to the new sentiment pattern. Another noteworthy result is that when
the amount of change is 30%, the model achieves the same level of accuracy as the
model without change after a certain number of instances.

In the following experiment we further study the sentiment change of individual
words. We visualize and monitor the sentiment of some words over time, which is
calculated as the difference between the probabilities of positive and negative classes
returned by the incremental logistic regression. This value is referred to as “sentiment
score”.

This score ranges from -1 to +1. The closer the sentiment score is to -1 or +1,
the more negative or positive the predicted sentiment will be, respectively. This score
gives an intuitive way to visualize the evolution of the sentiment. For example, if a
word originally has a positive sentiment and over time changes to a negative senti-
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ment, the change in sentiment would be detected when the score falls below the 0
mark.

The Table 2 lists the tokens for which the sentiment score is analyzed. It includes
3 randomly paired words that were swapped after a certain number of occurrences.

Token (a) Token (b)
1. dead popular
2. ridiculous advanced
3. nasty lucky

Table 2 Examples of Tokens Swapped.

The graphs in Figure 5 show the evolution of sentiment score for these tokens with
their swapped pair before and after change. The plots report the sentiment evolution
in both change and non-change scenarios. The red line illustrates the point at which
the token was switched with a token of the opposite sentiment.

In the graphs, it can be seen that the sentiment reverses for words ‘ridiculous’,
‘popular’ and ‘advanced’ with a high confidence (according to the classifier’s pre-
dictions). The word ‘ridiculous’ is originally a negative word (according to the seed
lexicon), and was replaced with ‘advanced’, a positive word. After the words were
swapped, the classifier takes about 150 occurrences for the word ‘ridiculous’ and
about 60 occurrences for ‘advanced’ to learn the new sentiment. As for words ‘nasty’
and ‘lucky’, it took the classifier about 700 and 600 occurrences to learn the new
sentiment. For the word ‘dead’ (replaced with ‘popular’), after the swap more than
1,000 word occurrences were needed for the classifier to consistently label it as a
positive token. This could be because it was swapped with a word (‘popular’) that
was constantly misclassified as negative before the change.

These results indicate that our model can learn the new sentiment of words, but
the necessary time to adjust can vary considerably from word to word.

5 Conclusions

Human language has always been subject to continuous change, and the advent of
social media has accelerated this process [20]. This phenomenon is particularly rele-
vant to the field of sentic computing, because in a scenario where words can change
their sentiment, new words can emerge and others can disappear, existing static sentic
resources are limited to ignoring these temporal dynamics of language.

This paper proposed a new methodology to incrementally follow the sentiment
dynamics of words using stream mining techniques. Our experimental results vali-
dated our research hypothesis, confirming that incremental word vectors and senti-
ment classifiers can be used together to successfully track the sentiment of words
over time. In addition, overall classification accuracy proofed to be robust to abrupt
sentiment change of 30% of the testing words.

This approach could be used for online opinion mining of social media streams,
and could be useful for monitoring public opinion in relation to various types of
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Fig. 5 Sentiment changes for some sample words.

events, such as political campaigns, civil unrest, sports competitions, film premieres
and natural disasters.

The source code of all the models implemented in this paper are freely released
and integrated into MOA [7], a machine learning tool for mining data streams. Our
aim is to provide a free tool to track public opinion from tweets that does not depend
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on expensive resources (such as labeled tweets) and that can be used by people who
do not necessarily have programming skills (e.g., linguists, journalists, sociologists).

However, we strongly recommend being careful with the application of the sen-
timent assigned by our method to entity words such as people and social groups.
Distributional word vectors are likely to inherit all the biases exhibited in the corpora
on which they are trained [3]. Therefore, we recommend caution with the interpre-
tation of the learned sentiment values of the entity words in the lexicon, since they
can reflect a general perception of the entity in the corpus rather than its underlying
sentiment valence.

For future work, we will implement incremental word embeddings models based
on neural networks, such as the incremental skip-gram model [38], and incorporate
them into our sentiment tracking framework. We will also experiment by adding other
sentiment signals into the seed lexicon that were not considered in this work such as
hashtags, emoticons and emojis.

It is important to note that our approach is based solely on the distributional hy-
pothesis in which all context words are treated equally. However, several studies in
sentiment analysis [46,48,47] state that the sentiment of a sentence is determined by
both its aspects and polarity terms. In the future, we plan to pre-process our sentences
with an aspect extraction method [48,47] and to treat aspects words as special context
attributes.

Another limitation of our approach is that we are not making any distinction be-
tween words occurring in affirmative and negated contexts. It is well known that the
use of negation terms in a sentence such as “no”, “don’t”, and “never” can signifi-
cantly affect the sentiment of its scope [40]. We plan on developing two strategies to
tackle this problem: 1) use a phrase extractor to add negated multi-word expressions
(e.g., not happy) into our vocabulary, 2) treat negation as a special type of context for
our word vectors to explicitly distinguish between affirmative and negated contexts.
Moreover, we plan to monitor the sentiment scores for tokens using change detection
algorithms implemented in MOA such as the ADWIN algorithm [5]. This will trigger
an alarm when a significant change is observed.

Other avenues of further research include adding a forgetting mechanism to our
word counts to make adaption to change faster, and going beyond binary sentiment
classes by using other affective categories such as those included in the Hourglass of
emotions [61]: introspection, temper, attitude and sensitivity.

As a final reflection, we hope that our study will open the door to further research
in expanding the sentic computing field to a dynamic setting in which language is not
static, but in continuous evolution.
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